STM32L451xx Datasheet by STMicroelectronics

This is information on a product in full production.
October 2020 DS11910 Rev 5 1/207
STM32L451xx
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
up to 512KB Flash, 160KB SRAM, analog, audio
Datasheet - production data
Features
Ultra-low-power with FlexPowerControl
1.71 V to 3.6 V power supply
-40 °C to 85/125 °C temperature range
145 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
22 nA Shutdown mode (5 wakeup pins)
106 nA Standby mode (5 wakeup pins)
375 nA Standby mode with RTC
2.05 µA Stop 2 mode, 2.40 µA with RTC
84 µA/MHz run mode
Batch acquisition mode (BAM)
4 µs wakeup from Stop mode
Brown out reset (BOR)
Interconnect matrix
Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
Performance benchmark
1.25 DMIPS/MHz (Drystone 2.1)
273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
Energy benchmark
335 ULPMark™ CP score
104 ULPMark™ PP score
Clock Sources
4 to 48 MHz crystal oscillator
32 kHz crystal oscillator for RTC (LSE)
Internal 16 MHz factory-trimmed RC (±1%)
Internal low-power 32 kHz RC (±5%)
Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
Internal 48 MHz with clock recovery
2 PLLs for system clock, audio, ADC
Up to 83 fast I/Os, most 5 V-tolerant
RTC with HW calendar, alarms and calibration
Up to 21 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
12x timers: 1x 16-bit advanced motor-control,
1x 32-bit and 3x 16-bit general purpose, 2x 16-
bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
Memories
Up to 512 KB single bank Flash,
proprietary code readout protection
160 KB of SRAM including 32 KB with
hardware parity check
Quad SPI memory interface
Rich analog peripherals (independent supply)
1x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
1x 12-bit DAC output channels, low-power
sample and hold
1x operational amplifier with built-in PGA
2x ultra-low-power comparators
Accurate 2.5 V or 2.048 V reference
voltage buffered output
16x communication interfaces
1x SAI (serial audio interface)
4x I2C FM+(1 Mbit/s), SMBus/PMBus
3x USARTs (ISO 7816, LIN, IrDA, modem)
1x UART (LIN, IrDA, modem)
1x LPUART (Stop 2 wake-up)
3x SPIs (and 1x Quad SPI)
CAN (2.0B Active) and SDMMC interface
IRTIM (Infrared interface)
14-channel DMA controller
UFBGA100 (7×7)
LQFP64 (10×10) UFBGA64 (5×5)
LQFP100 (14×14) WLCSP64 UFQFPN48 (7×7)
(3.36×3.66)
LQFP48 (7×7)
www.st.com
STM32L451xx
2/207 DS11910 Rev 5
True random number generator
CRC calculation unit, 96-bit unique ID
Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
All packages are ECOPACK2® compliant
Table 1. Device summary
Reference Part numbers
STM32L451xx STM32L451CC, STM32L451RC, STM32L451VC, STM32L451CE, STM32L451RE,
STM32L451VE
DS11910 Rev 5 3/207
STM32L451xx Contents
6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 20
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 38
3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 38
3.15 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.15.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.16 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Contents STM32L451xx
4/207 DS11910 Rev 5
3.17 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.18 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.19 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.21 Digital filter for Sigma-Delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 43
3.22 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.23.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16) . . . . . . . . . . . . . . 46
3.23.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.23.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.24 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 48
3.25 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.26 Universal synchronous/asynchronous receiver transmitter (USART) . . . 50
3.27 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 51
3.28 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.29 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.30 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 53
3.32 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.33 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.34.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.34.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DS11910 Rev 5 5/207
STM32L451xx Contents
6
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 92
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 92
6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 140
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 141
6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 154
6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.25 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 167
Contents STM32L451xx
6/207 DS11910 Rev 5
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.4 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.5 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.6 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.7 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 201
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
DS11910 Rev 5 7/207
STM32L451xx List of tables
9
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L451xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 18
Table 4. STM32L451xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 5. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. STM32L451xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 8. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 9. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 10. DFSDM1 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 11. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 12. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 13. STM32L451xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 14. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 15. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 16. STM32L451xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 17. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 18. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 19. STM32L451xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 84
Table 20. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 21. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 22. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 24. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 25. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 26. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 98
Table 28. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 29. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 101
Table 31. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 32. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 33. Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . 103
Table 34. Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 104
Table 35. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 36. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 37. Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 38. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 39. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 40. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 41. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 42. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
List of tables STM32L451xx
8/207 DS11910 Rev 5
Table 43. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 44. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 45. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 46. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 47. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 48. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 49. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 50. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 51. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 52. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 53. PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 54. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 55. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 56. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 57. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 58. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 59. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 60. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 61. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 62. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 63. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 64. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 65. EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 66. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 67. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 68. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 69. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 70. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 71. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 72. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 73. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 74. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 75. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 76. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 77. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 78. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 79. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 80. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 81. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 82. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 83. WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 84. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 85. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 86. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 87. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 88. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 89. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 90. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 91. LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 92. UFBGA100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 93. UFBGA100 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 184
Table 94. LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
DS11910 Rev 5 9/207
STM32L451xx List of tables
9
Table 95. UFBGA64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 96. UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . 190
Table 97. WLCSP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 98. WLCSP64 - Recommended PCB design rules (0.4 mm pitch). . . . . . . . . . . . . . . . . . . . . 194
Table 99. LQFP48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 100. UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 101. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 102. STM32L451xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 103. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
List of figures STM32L451xx
10/207 DS11910 Rev 5
List of figures
Figure 1. STM32L451xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 5. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 6. STM32L451Vx LQFP100 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 7. STM32L451Vx UFBGA100 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 8. STM32L451Rx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 9. STM32L451Rx UFBGA64 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 10. STM32L451Rx WLCSP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 11. STM32L451Cx LQFP48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 12. STM32L451Cx UFQFPN48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 13. STM32L451xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 14. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 15. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 16. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 17. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 18. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 19. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 20. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 21. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 22. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 23. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 24. Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 25. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 26. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 27. I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 29. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 30. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 31. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 32. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 33. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 34. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 35. Quad SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 36. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 37. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 38. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 39. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 40. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 41. LQFP100 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 42. LQFP100 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 43. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 44. UFBGA100 -Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 45. UFBGA100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 46. UFBGA100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 47. LQFP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 48. LQFP64 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
DS11910 Rev 5 11/207
STM32L451xx List of figures
11
Figure 49. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 50. UFBGA64 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 51. UFBGA64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 52. UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 53. WLCSP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 54. WLCSP64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 55. WLCSP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 56. LQFP48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 57. LQFP48 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 58. LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 59. UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 60. UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 61. UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 62. LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
arm
Introduction STM32L451xx
12/207 DS11910 Rev 5
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L451xx microcontrollers.
This document should be read in conjunction with the STM32L41x, STM32L42x,
STM32L43x, STM32L44x, STM32L45x, STM32L46x reference manual (RM0394), available
from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS11910 Rev 5 13/207
STM32L451xx Description
56
2 Description
The STM32L451xx devices are ultra-low-power microcontrollers based on the
high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to
80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision that
supports all Arm® single-precision data-processing instructions and data types. It also
implements a full set of DSP instructions and a memory protection unit (MPU) which
enhances application security.
The STM32L451xx devices embed high-speed memories (Flash memory up to 512 Kbyte,
160 Kbyte of SRAM), a Quad SPI Flash memories interface (available on all packages) and
an extensive range of enhanced I/Os and peripherals connected to two APB buses, two
AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L451xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,
one DAC channel, an internal voltage reference buffer, a low-power RTC, one general-
purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose
16-bit timers, and two 16-bit low-power timers.
In addition, up to 21 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces, namely four I2Cs,
three SPIs, three USARTs, one UART and one Low-Power UART, one SAI, one SDMMC,
one CAN.
The STM32L451xx operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C
(+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive
set of power-saving modes makes possible the design of low-power applications.
Some independent power supplies are supported: analog independent supply input for
ADC, DAC, OPAMP and comparators. A VBAT input makes it possible to backup the RTC
and backup registers.
The STM32L451xx family offers six packages from 48 to 100-pin packages.
Description STM32L451xx
14/207 DS11910 Rev 5
Table 2. STM32L451xx family device features and peripheral counts
Peripheral STM32L451Vx STM32L451Rx STM32L451Cx
Flash memory 256KB 512KB 256KB 512KB 256KB 512KB
SRAM 160KB
Quad SPI Yes
Timers
Advanced
control 1 (16-bit)
General
purpose
2 (16-bit)
1 (32-bit)
Basic 2 (16-bit)
Low -power 2 (16-bit)
SysTick timer 1
Watchdog
timers
(independent,
window)
2
Comm.
interfaces
SPI 3
I2C4
USART
UART
LPUART
3
1
1
SAI 1
CAN 1
SDMMC Yes No
RTC Yes
Tamper pins 3 2 2
Random generator Yes
GPIOs
Wakeup pins
83
5
52
4
38
3
Capacitive sensing
Number of channels 21 12 6
12-bit ADC
Number of channels
1
16
1
16
1
10
12-bit DAC channels 1
Internal voltage reference
buffer Yes No
Analog comparator 2
Operational amplifiers 1
Max. CPU frequency 80 MHz
Operating voltage 1.71 to 3.6 V
DS11910 Rev 5 15/207
STM32L451xx Description
56
Operating temperature
Ambient operating temperature:
-40 to 85 °C / -40 to 125 °C
Junction temperature:
-40 to 105 °C / -40 to 130 °C
Packages LQFP100
UFBGA100
WLCSP64
LQFP64
UFBGA64
LQFP48
UFQFPN48
Table 2. STM32L451xx family device features and peripheral counts (continued)
Peripheral STM32L451Vx STM32L451Rx STM32L451Cx
Description STM32L451xx
16/207 DS11910 Rev 5
Figure 1. STM32L451xx block diagram
Note: AF: alternate function on I/O pins.
MSv40109V1
Flash
up to
512 KB
GPIO PORT A
EXT IT. WKUP
83 AF
PA[15:0]
TIM1 / PWM
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
USART1
RX, TX, CK,CTS,
RTS as AF
SPI1
MOSI, MISO,
SCK, NSS as AF
A60
OUT1
ITF
WWDG
RTC_TS
OSC32_IN
OSC32_OUT
smcard
IrDA
16b
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.55 to 3.6 V
JTAG & SW
ARM Cortex-M4
80 MHz
FPU
NVIC
ETM
MPU
DMA2
ART
ACCEL/
CACHE
RNG
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
MAN AGT
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
Reset & clock
control
PCLKx
Voltage
regulator
3.3 to 1.2 V
VDD Power management
@ VDD
RTC_TAMPx
Backup register
AHB bus-matrix
TIM15
2 channels,
1 compl. channel, BKIN as AF
TIM6
TIM2
D-BUS
SRAM2 32 KB
APB1 80 MHz (max)
SRAM1 128 KB
I-BUS
S-BUS
DMA1
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PH[1:0],
PH[3]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT H
16b
TIM16 16b
1 channel,
1 compl. channel, BKIN as AF
16b
32b 4 channels, ETR as AF
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
16 external analog inputs
VREF+
USAR T 2MBps
Temperature sensor
@ VDDA
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
Touch sensing controller
7 Groups of
4 channels max as AF RC HSI
RC LSI
PLL 1&2
MSI
Quad SPI memory interface
D0[3:0],
D1[3:0],
CLK0,
CLK1
CS
COMP1
INP, INM, OUT
COMP2
INP, INM, OUT
@ VDDA
RTC_OUT
AHB1 80 MHz
CRC
APB2 80MHz
AHB2 80 MHz
FIREWALL
VREF Buffer
@ VDDA
@ VDD
VDD = 1.71 to 3.6 V
VSS
VDDA, VSSA
VDD, VSS, NRST
VDDUSB
TRACECLK
TRACED[3:0]
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
ITF
ADC1
HSI48
AHB/APB1AHB/APB2
VOUT, VINM, VINP
OpAmp1
@VDDA
FIFO
TX, RX as AF
bxCAN1
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
I2C1/SMBUS SCL, SDA, SMBA as AF
MOSI, MISO, SCK, NSS as AF
SPI3
MOSI, MISO, SCK, NSS as AF
SPI2
USART2 RX, TX, CK, CTS, RTS as AF
smcard
IrDA
CRS CRS_SYNC
LPUART1 RX, TX, CTS, RTS as AF
SWPMI1 IO
RX, TX, SUSPEND as AF
LPTIM1 IN1, IN2, OUT, ETR as AF
LPTIM2 IN1, OUT, ETR as AF
SCL, SDA, SMBA as AF
I2C4/SMBUS
UART4 RX, TX, CTS, RTS as AF
IrDA
DFSDM
SDCKIN[3:0], SDDATIN[3:0],
SDCKOUT, SDTRIG as AF
USART3 RX, TX, CK, CTS, RTS as AF
smcard
IrDA
DAC1
DS11910 Rev 5 17/207
STM32L451xx Functional overview
56
3 Functional overview
3.1 Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems, developed to provide a low-cost platform that meets the needs of MCU
implementation with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code-
efficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions enabling efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L451xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L451xx family devices.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard
Arm® Cortex®-M4 processors. It balances the inherent performance advantage of the Arm®
Cortex®-M4 over Flash memory technologies, which normally requires the processor to wait
for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80 MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.
3.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole
4 Gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
Functional overview STM32L451xx
18/207 DS11910 Rev 5
3.4 Embedded Flash memory
STM32L451xx devices feature up to 512 Kbyte of embedded Flash memory available for
storing programs and data in single bank architecture. The Flash memory contains 256
pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 2-Kbyte granularity.
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
allows the user to select if the PCROP area is erased or not when the RDP protection
is changed from Level 1 to Level 0.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection.
Table 3. Access status versus readout protection level and execution modes
Area Protection
level
User execution Debug, boot from RAM or boot
from system memory (loader)
Read Write Erase Read Write Erase
Main
memory
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
System
memory
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
Option
bytes
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
Backup
registers
1YesYesN/A
(1)
1. Erased when RDP change from Level 1 to Level 0.
No No N/A(1)
2 Yes Yes N/A N/A N/A N/A
SRAM2 1 Yes Yes Yes(1) No No No(1)
2 Yes Yes Yes N/A N/A N/A
DS11910 Rev 5 19/207
STM32L451xx Functional overview
56
The address of the ECC fail can be read in the ECC register.
3.5 Embedded SRAM
STM32L451xx devices feature 160 Kbyte of embedded SRAM, split into two blocks:
128 Kbyte mapped at address 0x2000 0000 (SRAM1)
32 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2002 0000, offering a contiguous address
space with the SRAM1 (32 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance.
These 32 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6 Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
Three segments can be protected and defined thanks to the Firewall registers:
Code segment (located in Flash or SRAM1 if defined as executable protected
area)
Non-volatile data segment (located in Flash)
Volatile data segment (located in SRAM1)
The start address and the length of each segments are configurable:
Code segment: up to 1024 Kbyte with granularity of 256 bytes
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
Volatile data segment: up to 128 Kbyte with a granularity of 64 bytes
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
Volatile data segment can be shared or not with the non-protected code
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.
3.7 Boot modes
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select
one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
Functional overview STM32L451xx
20/207 DS11910 Rev 5
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the
first flash memory location is not programmed and if the boot selection is configured to boot
from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI or CAN.
3.8 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.9 Power supply management
3.9.1 Power supply schemes
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
VDDA = 1.62 V (ADC/COMPs) / 1.8 (DAC/OPAMP) / 2.4 V (VREFBUF) to 3.6 V:
external analog power supply for ADC, DAC, OPAMP, Comparators and Voltage
reference buffer. The VDDA voltage level is independent from the VDD voltage.
VBAT = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note: When the functions supplied by VDDA are not used, this supply should preferably be shorted
to VDD.
Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant.
Note: VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with
VDDIO1 = VDD.
DS11910 Rev 5 21/207
STM32L451xx Functional overview
56
Figure 2. Power supply overview
During power-up and power-down phases, the following power sequence requirements
must be respected:
When VDD is below 1 V, other power supplies (VDDA) must remain below VDD +
300 mV.
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power-down transient
phase.
MSv39205V2
Low voltage detector
VDDA
VDDA domain
VSS
VDD
VBAT
A/D converters
Comparators
D/A converters
Operational amplifiers
Voltage reference buffer
VDD domain
I/O ring
VSSA
Reset block
Temp. sensor
PLL, HSI, MSI, HSI48
Standby circuitry
(Wakeup logic, IWDG)
Voltage regulator
VDDIO1
LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC
Backup domain
Core
Memories
Digital peripherals
VCORE domain
VCORE
,,,,,,,4, , ,,,,,,,,,,,,,,,,,,,,,,,,,
Functional overview STM32L451xx
22/207 DS11910 Rev 5
Figure 3. Power-up/down sequence
1. VDDX refers to VDDA.
3.9.2 Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltage VDDA with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.
MSv47490V1
0.3
1
VBOR0
3.6
Operating modePower-on Power-down time
V
VDDX(1)
VDD
Invalid supply area VDDX < VDD + 300 mV VDDX independent from VDD
DS11910 Rev 5 23/207
STM32L451xx Functional overview
56
3.9.3 Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L451xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
Range 1 with the CPU running at up to 80 MHz.
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
3.9.4 Low-power modes
The ultra-low-power STM32L451xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
Functional overview STM32L451xx
24/207 DS11910 Rev 5
Table 4. STM32L451xx modes overview
Mode Regulator(1) CPU Flash SRAM Clocks DMA & Peripherals(2) Wakeup source Consumption(3) Wakeup time
Run MR range 1 Yes ON(4) ON Any All N/A 94 µA/MHz N/A
MR range2 All except RNG 85 µA/MHz
LPRun LPR Yes ON(4) ON
Any
except
PLL
All except RNG N/A 95 µA/MHz to Range 1: 4 µs
to Range 2: 64 µs
Sleep MR range 1 No ON(4) ON(5) Any All Any interrupt or
event
27 µA/MHz 6 cycles
MR range2 All except RNG 27 µA/MHz
LPSleep LPR No ON(4) ON(5) Any
except
PLL
All except RNG Any interrupt or
event 38 µA/MHz 6 cycles
Stop 0
MR Range 1
No OFF ON LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)(6)
UART4(6)
LPUART1(6)
I2Cx (x=1...4)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)(6)
UART4(6)
LPUART1(6)
I2Cx (x=1...4)(7)
LPTIMx (x=1,2)
125 µA
2.47 µs in SRAM
4.1 µs in Flash
MR Range 2 125 µA
STM32L451xx Functional overview
DS11910 Rev 5 25/207
Stop 1 LPR No Off ON LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)(6)
UART4(6)
LPUART1(6)
I2Cx (x=1...4)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)(6)
UART4(6)
LPUART1(6)
I2Cx (x=1...4)(7)
LPTIMx (x=1,2)
9.85 µA w/o RTC
10.5 µA w RTC
5.7 µs in SRAM
7 µs in Flash
Stop 2 LPR No Off ON LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1
2.05 µA w/o RTC
2.30 µA w/RTC
5.8 µs in SRAM
8.3 µs in Flash
Table 4. STM32L451xx modes overview (continued)
Mode Regulator(1) CPU Flash SRAM Clocks DMA & Peripherals(2) Wakeup source Consumption(3) Wakeup time
Functional overview STM32L451xx
26/207 DS11910 Rev 5
Standby
LPR
Power
ed Off Off
SRAM
2 ON
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(8)
BOR, RTC, IWDG
0.35 µA w/o RTC
0.52 µA w/ RTC
16.1 µs
OFF
Power
ed
Off
0.10 µA w/o RTC
0.27 µA w/ RTC
Shutdown OFF Power
ed Off Off
Power
ed
Off
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-
down(9)
Reset pin
5 I/Os (WKUPx)(8)
RTC
0.02 µA w/o RTC
0.17 µA w/ RTC 256 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
9. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Table 4. STM32L451xx modes overview (continued)
Mode Regulator(1) CPU Flash SRAM Clocks DMA & Peripherals(2) Wakeup source Consumption(3) Wakeup time
DS11910 Rev 5 27/207
STM32L451xx Functional overview
56
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the low-
power run mode.
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
Functional overview STM32L451xx
28/207 DS11910 Rev 5
Shutdown mode
The Shutdown mode permits to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
DS11910 Rev 5 29/207
STM32L451xx Functional overview
56
Table 5. Functionalities depending on the working mode(1)
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
Stop 0/1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU Y - Y - - --------
Flash memory (up to
512 KB) O(2) O(2) O(2) O(2) ---------
SRAM1 (128 KB) Y Y(3) YY
(3) Y-Y------
SRAM2 (32 KB) Y Y(3) YY
(3) Y-Y-O
(4) ----
Quad SPI O O O O - --------
Backup registers Y Y Y Y Y -Y-Y-Y-Y
Brown-out reset
(BOR) YYYYYYYYYY- --
Programmable
voltage detector
(PVD)
OOOOO
OOO- ----
Peripheral voltage
monitor (PVMx;
x=1,3,4)
OOOOO
OOO- ----
DMA OOOO-
--------
High speed Internal
(HSI16) OOOO
(5) -(5) ------
Oscillator RC48 O O - - - --------
High speed external
(HSE) OOOO-
--------
Low speed internal
(LSI) OOOOO
-O-O----
Low speed external
(LSE) OOOOO
-O-O-O-O
Multi-Speed internal
(MSI) OOOO-
--------
Clock security
system (CSS) OOOO-
--------
Clock security
system on LSE OOOOO
OOOOO- --
RTC / Auto wakeup O O O O O OOOOOOOO
Number of RTC
Tamper pins 33333O3O3O3O3
Functional overview STM32L451xx
30/207 DS11910 Rev 5
USARTx (x=1,2,3)
UART4 OOOOO
(6) O(6) -------
Low-power UART
(LPUART) OOOOO
(6) O(6) O(6) O(6) -----
I2Cx (x=1,2,4) O O O O O(7) O(7) -------
I2C3 OOOOO
(7) O(7) O(7) O(7) -----
SPIx (x=1,2,3) O O O O - --------
CAN OOOO-
--------
SDMMC1 O O O O - --------
SAIx (x=1) O O O O - --------
DFSDM1 OOOO-
--------
ADCx (x=1) O O O O - --------
DAC1 O O O O O --------
VREFBUF O O O O O --------
OPAMPx (x=1) O O O O O --------
COMPx (x=1,2) O O O O O OOO- ----
Temperature sensor O O O O - --------
Timers (TIMx) O O O O - --------
Low-power timer 1
(LPTIM1) OOOOOOOO- ----
Low-power timer 2
(LPTIM2) OOOOO
O- ------
Independent
watchdog (IWDG) OOOOO
OOOOO- --
Window watchdog
(WWDG) OOOO-
--------
SysTick timer O O O O - --------
Touch sensing
controller (TSC) OOOO---------
Random number
generator (RNG) O(8) O(8) -----------
Table 5. Functionalities depending on the working mode(1) (continued)
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
Stop 0/1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
DS11910 Rev 5 31/207
STM32L451xx Functional overview
56
3.9.5 Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.9.6 VBAT operation
The VBAT pin permits to power the device VBAT domain from an external battery, an
external supercapacitor, or from VDD when no external battery and an external
supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup
registers. Three anti-tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
CRC calculation unit O O O O - --------
GPIOs OOOOO
OOO(9) 5
pins
(10)
(11) 5
pins
(10) -
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
Table 5. Functionalities depending on the working mode(1) (continued)
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
Stop 0/1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
Functional overview STM32L451xx
32/207 DS11910 Rev 5
3.10 Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
Table 6. STM32L451xx peripherals interconnect matrix
Interconnect source Interconnect
destination Interconnect action
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
TIMx
TIMx Timers synchronization or chaining Y Y Y Y - -
ADCx
DAC1
DFSDM1
Conversion triggers Y Y Y Y - -
DMA Memory to memory transfer trigger Y Y Y Y - -
COMPx Comparator output blanking Y Y Y Y - -
TIM15/TIM16 IRTIM Infrared interface output generation Y Y Y Y - -
COMPx
TIM1
TIM2
Timer input channel, trigger, break from
analog signals comparison YYYY - -
LPTIMERx Low-power timer triggered by analog
signals comparison YYYYYY
(1)
ADCx TIM1 Timer triggered by analog watchdog Y Y Y Y - -
RTC
TIM16 Timer input channel from RTC events Y Y Y Y - -
LPTIMERx Low-power timer triggered by RTC alarms
or tampers YYYYYY
(1)
All clocks sources (internal
and external)
TIM2
TIM15, 16
Clock source used as input channel for
RC measurement and trimming YYYY - -
CSS
CPU (hard fault)
RAM (parity error)
Flash memory (ECC error)
COMPx
PVD
DFSDM1 (analog
watchdog, short circuit
detection)
TIM1
TIM15,16 Timer break Y Y Y Y - -
DS11910 Rev 5 33/207
STM32L451xx Functional overview
56
GPIO
TIMx External trigger Y Y Y Y - -
LPTIMERx External trigger Y Y Y Y Y Y
(1)
ADCx
DAC1
DFSDM1
Conversion external trigger Y Y Y Y - -
1. LPTIM1 only.
Table 6. STM32L451xx peripherals interconnect matrix (continued)
Interconnect source Interconnect
destination Interconnect action
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Functional overview STM32L451xx
34/207 DS11910 Rev 5
3.11 Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the SDMMC or the RNG peripherals. This clock can be output on the
MCO.
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
Peripheral clock sources: Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs,
LPTimers, ADC) have their own independent clock whatever the system clock. Two
PLLs, each having three independent outputs allowing the highest flexibility, can
generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS11910 Rev 5 35/207
STM32L451xx Functional overview
56
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
Clock-out capability:
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.
LSCO is not available in VBAT mode.
Several prescalers permit to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.
S S msmm mg LS HSE svsch MS‘ HSHG svscLK svsch
Functional overview STM32L451xx
36/207 DS11910 Rev 5
Figure 4. Clock tree
MSv41619V2
SYSCLK
MCO
LSCO
PLL
to IWDG
to RTC
to PWR
HCLK
to AHB bus, core, memory and DMA
FCLK Cortex free running clock
to Cortex system timer
to APB1 peripherals
to APB2 peripherals
PCLK1
PCLK2
LSE
HSI16
SYSCLK to USARTx
x=2..3
to UART4
to LPUART1
to I2Cx
x=1,2,3,4
to LPTIMx
x=1,2
SAI1_EXTCLK
to TIMx
x=2,6,7
OSC32_OUT
OSC32_IN
MSI HSI16
HSE
HSI16
LSI
LSE
HSE
SYSCLK
HSE
MSI
HSI16
LSE OSC
32.768 kHz /32
AHB PRESC
/ 1,2,..512
/ 8
APB1 PRESC
/ 1,2,4,8,16
x1 or x2
HSI16
SYSCLK
LSI
LSE
HSI16
APB2 PRESC
/ 1,2,4,8,16
to TIMx
x=1,15,16
x1 or x2
to USART1
LSE
HSI16
SYSCLK
/ P
/ Q
/ R
PLLSAI1
/ P
/ Q
/ R
/ M
MSI RC
100 kHz – 48 MHz
HSI RC
16 MHz
HSE OSC
4-48 MHz
Clock
detector
OSC_OUT
OSC_IN
/ 1→16
LSI RC 32 kHz
Clock
source
control
PLLSAI1CLK
PLL48M1CLK
PLLCLK
PLLSAI2CLK
PLL48M2CLK
PLLADC1CLK
HSI48
MSI
PLLCLK
48 MHz clock to RNG, SDMMC
to ADC
to SAI1
MSI
SYSCLK
HSI16
HSI16
HSI RC
48 MHz
CRS
SYSCLK to DFSDM1
DS11910 Rev 5 37/207
STM32L451xx Functional overview
56
3.12 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.13 Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
14 independently configurable channels (requests)
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
Support for circular buffer management
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
Memory-to-memory transfer
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
Access to Flash, SRAM, APB and AHB peripherals as source and destination
Programmable number of data to be transferred: up to 65536.
Table 7. DMA implementation
DMA features DMA1 DMA2
Number of regular channels 7 7
Functional overview STM32L451xx
38/207 DS11910 Rev 5
3.14 Interrupts and events
3.14.1 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-
M4.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.14.2 Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 37 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 83 GPIOs can be connected to the 16 external interrupt lines.
DS11910 Rev 5 39/207
STM32L451xx Functional overview
56
3.15 Analog to digital converter (ADC)
The device embeds a successive approximation analog-to-digital converter with the
following features:
12-bit native resolution, with built-in calibration
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
Up to 16 external channels.
4 internal channels: internal reference voltage, temperature sensor, VBAT/3 and
DAC1_OUT1.
One external reference pin is available on some package, allowing the input voltage
range to be independent from the power supply
Single-ended and differential mode inputs
Low-power design
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
ADC supports multiple trigger inputs for synchronization with on-chip timers and
external signals
Results stored into data register or in RAM with DMA controller support
Data pre-processing: left/right alignment and per channel offset compensation
Built-in oversampling unit for enhanced SNR
Channel-wise programmable sampling time
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
3.15.1 Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Functional overview STM32L451xx
40/207 DS11910 Rev 5
3.15.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
3.15.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the VBAT voltage may be
higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally
connected to a bridge divider by 3. As a consequence, the converted digital value is one
third the VBAT voltage.
3.16 Digital to analog converter (DAC)
One 12-bit buffered DAC channel can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
Table 8. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Table 9. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
DS11910 Rev 5 41/207
STM32L451xx Functional overview
56
This digital interface supports the following features:
Up to two DAC output channels
8-bit or 12-bit output mode
Buffer offset calibration (factory and user trimming)
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.
3.17 Voltage reference buffer (VREFBUF)
The STM32L451xx devices embed an voltage reference buffer which can be used as
voltage reference for ADCs, DAC and also as voltage reference for external components
through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
2.048 V
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the
internal voltage reference buffer is not available.
Figure 5. Voltage reference buffer
MSv40197V1
VREFBUF
Low frequency
cut-off capacitor
DAC, ADC
Bandgap +
VDDA
-
100 nF
VREF+
Functional overview STM32L451xx
42/207 DS11910 Rev 5
3.18 Comparators (COMP)
The STM32L451xx devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output channels
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.19 Operational amplifier (OPAMP)
The STM32L451xx embeds one operational amplifier with external or internal follower
routing and PGA capability.
The operational amplifier features:
Low input bias current
Low offset voltage
Low-power mode
Rail-to-rail input
3.20 Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (such as
glass or plastic). The capacitive variation introduced by the finger (or any conductive object)
is measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
DS11910 Rev 5 43/207
STM32L451xx Functional overview
56
The main features of the touch sensing controller are the following:
Proven and robust surface charge transfer acquisition principle
Supports up to 21 capacitive sensing channels
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
Spread spectrum feature to improve system robustness in noisy environments
Full hardware management of the charge transfer acquisition sequence
Programmable charge transfer frequency
Programmable sampling capacitor I/O pin
Programmable channel I/O pin
Programmable max count value to avoid long acquisition when a channel is faulty
Dedicated end of acquisition and max count error flags with interrupt capability
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
Designed to operate with STMTouch touch sensing firmware library
Note: The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
3.21 Digital filter for Sigma-Delta modulators (DFSDM)
The device embeds one DFSDM with 2 digital filters modules and 4 external input serial
channels (transceivers) or alternately 4 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
Functional overview STM32L451xx
44/207 DS11910 Rev 5
hardware. DFSDM features optional parallel data stream inputs from microcontrollers
memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various Σ∆
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
4 multiplexed input digital serial channels:
configurable SPI interface to connect various SD modulator(s)
configurable Manchester coded 1 wire interface support
PDM (Pulse Density Modulation) microphone input support
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
internal sources: device memory data streams (DMA)
2 digital filter modules with adjustable digital signal processing:
–Sinc
x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
integrator: oversampling ratio (1..256)
up to 24-bit output data resolution, signed output data format
automatic data offset correction (offset stored in register by user)
continuous or single conversion
start-of-conversion triggered by:
software trigger
internal timers
external events
start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
analog watchdog feature:
low value and high value data threshold registers
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
input from final output data or from selected input digital serial channels
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
monitoring continuously each input serial channel
break signal generation on analog watchdog event or on short circuit detector event
extremes detector:
storage of minimum and maximum values of final conversion data
refreshed by software
DMA capability to read the final conversion data
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
“regular” or “injected” conversions:
“regular” conversions can be requested at any time or even in continuous mode
DS11910 Rev 5 45/207
STM32L451xx Functional overview
56
without having any impact on the timing of “injected” conversions
“injected” conversions for precise timing and with high conversion priority
3.22 Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.23 Timers and watchdogs
The STM32L451xx includes one advanced control timers, up to five general-purpose timers,
two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table
below compares the features of the advanced control, general purpose and basic timers.
Table 10. DFSDM1 implementation
DFSDM features DFSDM1
Number of channels 8
Number of filters 4
Input from internal ADC -
Supported trigger sources 10
Pulses skipper -
ID registers support -
Table 11. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control TIM1 16-bit Up, down,
Up/down
Any integer
between 1
and 65536
Yes 4 3
General-
purpose TIM2 32-bit Up, down,
Up/down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM3 16-bit Up, down,
Up/down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM15 16-bit Up
Any integer
between 1
and 65536
Yes 2 1
General-
purpose TIM16 16-bit Up
Any integer
between 1
and 65536
Yes 1 1
Basic TIM6 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
Functional overview STM32L451xx
46/207 DS11910 Rev 5
3.23.1 Advanced-control timer (TIM1)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted dead-
times. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.23.2) using the same architecture, so the advanced-control timer can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
3.23.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16)
There are up to three synchronizable general-purpose timers embedded in the
STM32L451xx (see Table 11 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
TIM2, TIM3
They are full-featured general-purpose timers:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
TIM3 has 16-bit auto-reload up/downcounter and 16-bit prescaler.
These timers feature 4 independent channels for input capture/output compare, PWM
or one-pulse mode output. They can work with the other general-purpose timers via the
Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoder.
TIM15 and 16
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 has 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.23.3 Basic timer (TIM6)
The basic timer is mainly used for DAC trigger generation. It can also be used as generic
16-bit timebase.
DS11910 Rev 5 47/207
STM32L451xx Functional overview
56
3.23.4 Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
Internal clock sources: LSE, LSI, HSI16 or APB clock
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
Programmable digital glitch filter
Encoder mode (LPTIM1 only)
3.23.5 Infrared interface (IRTIM)
The STM32L451xx includes one infrared interface (IRTIM), which can be used with an
infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels
to generate output signal waveforms on IR_OUT pin.
3.23.6 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.23.7 System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
Functional overview STM32L451xx
48/207 DS11910 Rev 5
3.23.8 SysTick timer
This timer is dedicated to real-time operating systems, but can also be used as a standard
down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source
3.24 Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature, which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
DS11910 Rev 5 49/207
STM32L451xx Functional overview
56
3.25 Inter-integrated circuit interface (I2C)
The device embeds four I2C. Refer to Table 12 for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
Table 12. I2C implementation
I2C features(1)
1. X: supported
I2C1 I2C2 I2C3 I2C4
Standard-mode (up to 100 kbit/s) X X X X
Fast-mode (up to 400 kbit/s) X X X X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X X
Programmable analog and digital noise filters X X X X
SMBus/PMBus hardware support X X X X
Independent clock X X X X
Wakeup from Stop 1 mode on address match X X X X
Wakeup from Stop 2 mode on address match - - X -
Functional overview STM32L451xx
50/207 DS11910 Rev 5
3.26 Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L451xx devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3) and one universal asynchronous receiver
transmitters (UART4).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable, and are able to communicate at speeds of up to
10 Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and
SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2,3,4) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The
wake up events from Stop mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 13. STM32L451xx USART/UART/LPUART features
USART modes/features(1)
1. X = supported.
USART1 USART2 USART3 UART4 LPUART1
Hardware flow control for modem X X X X X
Continuous communication using DMA X X X X X
Multiprocessor communication X X X X X
Synchronous mode X X X - -
Smartcard mode X X X - -
Single-wire half-duplex communication X X X X X
IrDA SIR ENDEC block X X X X -
LIN mode X X X X -
Dual clock domain XXXX X
Wakeup from Stop 0 / Stop 1 modes X X X X X
Wakeup from Stop 2 mode - - - - X
Receiver timeout interrupt X X X X -
Modbus communication X X X X -
Auto baud rate detection X (4 modes) -
Driver Enable X X X X X
LPUART/USART data length 7, 8 and 9 bits
DS11910 Rev 5 51/207
STM32L451xx Functional overview
56
3.27 Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
Functional overview STM32L451xx
52/207 DS11910 Rev 5
3.28 Serial peripheral interface (SPI)
Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
3.29 Serial audio interfaces (SAI)
The device embeds 1 SAI. Refer to Tabl e 14: SAI implementation for the features
implementation. The SAI bus interface handles communications between the
microcontroller and the serial audio protocol.
The SAI peripheral supports:
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
8-word integrated FIFOs for each audio sub-block.
Synchronous or asynchronous mode between the audio sub-blocks.
Master or slave configuration independent for both audio sub-blocks.
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
Peripheral with large configurability and flexibility permitting to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
Number of bits by frame may be configurable.
Frame synchronization active level configurable (offset, bit length, level).
First active bit position in the slot is configurable.
LSB first or MSB first for data transfer.
Mute mode.
Stereo/Mono audio frame capability.
Communication clock strobing edge configurable (SCK).
Error flags with associated interrupts if enabled respectively.
Overrun and underrun detection.
Anticipated frame synchronization signal detection in slave mode.
Late frame synchronization signal detection in slave mode.
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–Errors.
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
DS11910 Rev 5 53/207
STM32L451xx Functional overview
56
3.30 Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
The CAN peripheral supports:
Supports CAN protocol version 2.0 A, B Active
Bit rates up to 1 Mbit/s
Transmission
Three transmit mailboxes
Configurable transmit priority
Reception
Two receive FIFOs with three stages
14 Scalable filter banks
Identifier list feature
Configurable FIFO overrun
Time-triggered communication option
Disable automatic retransmission mode
16-bit free running timer
Time Stamp sent in last two data bytes
Management
Maskable interrupts
Software-efficient mailbox mapping at a unique address space
3.31 Secure digital input/output and MultiMediaCards Interface
(SDMMC)
The card host interface (SDMMC) provides an interface between the APB peripheral bus
and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
Table 14. SAI implementation
SAI features Support(1)
1. X: supported
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X
Mute mode X
Stereo/Mono audio frame capability. X
16 slots X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X
FIFO Size X (8 Word)
SPDIF X
Functional overview STM32L451xx
54/207 DS11910 Rev 5
The SDMMC features include the following:
Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
Full compatibility with previous versions of MultiMediaCards (forward compatibility)
Full compliance with SD Memory Card Specifications Version 2.0
Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
Data transfer up to 48 MHz for the 8 bit mode
Data write and read with DMA capability
3.32 Clock recovery system (CRS)
The STM32L451xx devices embed a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC
pin or generated by user software. For faster lock-in during startup it is also possible to
combine automatic trimming with manual trimming action.
3.33 Quad SPI memory interface (QUADSPI)
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:
Indirect mode: all the operations are performed using the QUADSPI registers
Status polling mode: the external Flash memory status register is periodically read and
an interrupt can be generated in case of flag setting
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad SPI flash memories are accessed simultaneously.
DS11910 Rev 5 55/207
STM32L451xx Functional overview
56
The Quad SPI interface supports:
Three functional modes: indirect, status-polling, and memory-mapped
Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two
flash memories in parallel.
SDR and DDR support
Fully programmable opcode for both indirect and memory mapped mode
Fully programmable frame format for both indirect and memory mapped mode
Each of the five following phases can be configured independently (enable, length,
single/dual/quad communication)
Instruction phase
Address phase
Alternate bytes phase
Dummy cycles phase
Data phase
Integrated FIFO for reception and transmission
8, 16, and 32-bit data accesses are allowed
DMA channel for indirect mode operations
Programmable masking for external flash flag management
Timeout management
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
Functional overview STM32L451xx
56/207 DS11910 Rev 5
3.34 Development support
3.34.1 Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins
can be reused as GPIO with alternate function): the JTAG TMS and TCK pins are shared
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.34.2 Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L451xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
P61403032 w I 3 P015 osc32 our I 9 PHOVOSC w I Pwrosc our I LQFP‘IOO
DS11910 Rev 5 57/207
STM32L451xx Pinouts and pin description
86
4 Pinouts and pin description
Figure 6. STM32L451Vx LQFP100 pinout(1)
1. The above figure shows the package top view.
MSv40964V2
LQFP100
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
9
11
4
6
8
1
2
3
5
7
VSS
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF-
VREF+
VDDA
PA0
PA1
PA2
PC15-OSC32_OUT
VDD
PE5
VBAT
PC14-OSC32_IN
PE2
PE3
PE4
PE6
PC13
66
64
63
62
61
60
59
58
57
56
55
54
53
52
51
67
65
72
70
68
75
74
73
71
69
91
89
88
87
86
85
84
83
82
81
80
79
78
77
76
92
90
97
95
93
100
99
98
96
94
35
37
38
39
40
41
42
43
44
45
46
47
48
49
50
34
36
29
31
33
26
27
28
30
32
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PE8
PE11
PA6
PA7
PE9
PE12
PE15
PB0
PB1
PE13
PB10
VSS
PE7
PE10
PE14
PB11
VDD
PC9
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA8
PC8
PA13
PA11
PA9
VDD
VSS
VDD
PA12
PA10
VDD
VSS
PB9
PB7
PB3
PE1
PE0
PB6
PD6
PD3
PB8
PH3-BOOT0
PD5
PD2
PC12
PB5
PB4
PD1
PC11
PA15
PD7
PD4
PD0
PC10
PA14
van I ‘ PC‘S I 2 PCM’OSCSQ w I 3 Pcwoscaz out I 4 we osc w I 5 PH‘rOSC out I s m I 9 LG FP64
Pinouts and pin description STM32L451xx
58/207 DS11910 Rev 5
Figure 7. STM32L451Vx UFBGA100 ballout(1)
1. The above figure shows the package top view.
Figure 8. STM32L451Rx LQFP64 pinout(1)
1. The above figure shows the package top view.
MSv40962V2
PE3 PE1 PB8 PH3-BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11
PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 VDD PA10
PC14-
OSC32_IN PE6 VSS PA9 PA8 PC9
PC15-
OSC32_OUT VBAT VSS PC8 PC7 PC6
PH0-OSC_IN VSS VSS VSS
PH1-
OSC_OUT VDD VDD VDD
PC0 NRST VDD PD15 PD14 PD13
VSSA PC1 PC2 PD12 PD11 PD10
VREF- PC3 PA2 PA 5 PC4 PD9 PD8 PB15 PB14 PB13
VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 PB11 PB12
VDDA PA1 PA4 PA7 PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15
UFBGA100
MSv40958V2
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
53
52
51
50
49
56
54
61
59
57
64
63
62
60
58
26
28
29
30
31
32
25
27
20
22
24
17
18
19
21
23
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PB11
PA6
PA7
VSS
PB0
PB1
PB10
VDD
VDD
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
PH3-BOOT0
PB5
PC12
PB9
PB8
PB4
PC10
PB7
PB6
PA15
PB3
PD2
PC11
PA14
DS11910 Rev 5 59/207
STM32L451xx Pinouts and pin description
86
Figure 9. STM32L451Rx UFBGA64 ballout(1)
1. The above figure shows the package top view.
Figure 10. STM32L451Rx WLCSP64 pinout(1)
1. The above figure shows the package top view.
MSv40960V2
PC14-
OSC32_IN PC13 PB9 PB4 PB3 PA15 PA14 PA13
12345678
A
B
C
D
E
F
G
H
PC15-
OSC32_OUT VBAT PB8 PH3-BOOT0 PD2 PC11 PC10 PA12
PH0-OSC_IN VSS PB7 PB5 PC12 PA11
PH1-
OSC_OUT VDD PB6
NRST PC1 PC0
VSSA/VREF- PC2
PC3 PA0
VDDA/VREF+ PA1 PA4
PA3
PA2
PC4
PB1
PB0
VDD
VSS
PA7
PA6
PA5
VDD
VSS
PB11
PB10
PB15
PC7
PA8
PC5
PB2
PC6
VDD
VSS
PA10 PA9
PB12
PB13
PB14
PC8
PC9
MSv40956V2
VDD PA15 PC12 PB4 PB7 PB8 VSS VDD
12345678
A
B
C
D
E
F
G
H
VSS VDD PC11 PB3 PB6 PH3-BOOT0 VBAT PC13
PA10 PA13 PA14 PD2 PB5 PC14-
OSC32_IN
PA9 PA11 PA12
PC7 PC9 PA8
PB15 PC6
PB14 PB13
VDD VSS PB11
PB12
PC8
PB0
PC5
PA5
PA7 PC3
PB10
PB2
PB1
PC4
PC10
VDD
PA2
VDDA/VREF+
PC1
NRST
PA6
PA4
PA3
PA0
PC2
PB9 PC15-
OSC32_OUT
PA1
VSSA/VREF-
PC0
PH1-
OSC_OUT
PH0-OSC_IN
VBAT I ‘ Pm: I 2 PCM’OSCE)? w l 3 PCIEVOSCSZ out I 4 we use w I 5 PHIVOSC out I s anr I 7 LQFP48
Pinouts and pin description STM32L451xx
60/207 DS11910 Rev 5
Figure 11. STM32L451Cx LQFP48 pinout(1)
1. The above figure shows the package top view.
Figure 12. STM32L451Cx UFQFPN48 pinout(1)
1. The above figure shows the package top view.
MSv39208V2
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
39
37
40
38
45
43
41
48
47
46
44
42
22
24
21
23
16
18
20
13
14
15
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3/BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15
MSv40954V2
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
39
37
40
38
45
43
41
48
47
46
44
42
22
24
21
23
16
18
20
13
14
15
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3-BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15
DS11910 Rev 5 61/207
STM32L451xx Pinouts and pin description
86
Table 15. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
RST Bidirectional reset pin with embedded weak pull-up resistor
Option for TT or FT I/Os
_f (1) I/O, Fm+ capable
_a (2) I/O, with Analog switch function supplied by VDDA
Notes Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
1. The related I/O structures in Table 16 are: FT_f, FT_fa.
2. The related I/O structures in Table 16 are: FT_a, FT_fa, TT_a.
Table 16. STM32L451xx pin definitions
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
---- 1B2 PE2 I/O FT -
TRACECK, TIM3_ETR,
TSC_G7_IO1,
SAI1_MCLK_A,
EVENTOUT
-
---- 2A1 PE3 I/O FT -
TRACED0, TIM3_CH1,
TSC_G7_IO2, SAI1_SD_B,
EVENTOUT
-
---- 3B1 PE4 I/O FT -
TRACED1, TIM3_CH2,
DFSDM1_DATIN3,
TSC_G7_IO3, SAI1_FS_A,
EVENTOUT
-
Pinouts and pin description STM32L451xx
62/207 DS11910 Rev 5
---- 4C2 PE5 I/O FT -
TRACED2, TIM3_CH3,
DFSDM1_CKIN3,
TSC_G7_IO4,
SAI1_SCK_A, EVENTOUT
-
---- 5D2 PE6 I/O FT - TRACED3, TIM3_CH4,
SAI1_SD_A, EVENTOUT RTC_TAMP3, WKUP3
1B71B2 6 E2 VBAT S - - - -
2B82A2 7 C1 PC13 I/O FT (1)
(2) EVENTOUT RTC_TAMP1, RTC_TS,
RTC_OUT, WKUP2
3C83A1 8 D1
PC14-
OSC32_
IN
(PC14)
I/O FT (1)
(2) EVENTOUT OSC32_IN
4C74B1 9 E1
PC15-
OSC32_
OUT
(PC15)
I/O FT (1)
(2) EVENTOUT OSC32_OUT
----10F2 VSS S - - - -
----11G2 VDD S - - - -
5D85C112 F1
PH0-
OSC_IN
(PH0)
I/O FT - EVENTOUT OSC_IN
6E86D113 G1
PH1-
OSC_
OUT
(PH1)
I/O FT - EVENTOUT OSC_OUT
7 F8 7 E1 14 H2 NRST I/O RST - - -
- D7 8 E3 15 H1 PC0 I/O FT_fa -
LPTIM1_IN1, I2C4_SCL,
I2C3_SCL, LPUART1_RX,
LPTIM2_IN1, EVENTOUT
ADC1_IN1
- D5 9 E2 16 J2 PC1 I/O FT_fa -
TRACED0, LPTIM1_OUT,
I2C4_SDA, I2C3_SDA,
LPUART1_TX, EVENTOUT
ADC1_IN2
-D610F217 J3 PC2 I/OFT_a-
LPTIM1_IN2, SPI2_MISO,
DFSDM1_CKOUT,
EVENTOUT
ADC1_IN3
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
DS11910 Rev 5 63/207
STM32L451xx Pinouts and pin description
86
-E711G118 K2 PC3 I/OFT_a -
LPTIM1_ETR, SPI2_MOSI,
SAI1_SD_A, LPTIM2_ETR,
EVENTOUT
ADC1_IN4
----19J1 VSSA S - - - -
----20K1 VREF- S - - - -
8G812F1 - - VSSA/
VREF- S-- - -
----21L1VREF+ S - - - VREFBUF_OUT
----22M1 VDDA S - - - -
9F713H1 - - VDDA/
VREF+ S-- - -
10 H8 14 G2 23 L2 PA0 I/O FT_a -
TIM2_CH1, USART2_CTS,
UART4_TX, COMP1_OUT,
SAI1_EXTCLK, TIM2_ETR,
EVENTOUT
OPAMP1_VINP,
COMP1_INM,
ADC1_IN5, RTC_TAMP2,
WKUP1
11 E6 15 H2 24 M2 PA1 I/O FT_a -
TIM2_CH2, I2C1_SMBA,
SPI1_SCK,
USART2_RTS_DE,
UART4_RX, TIM15_CH1N,
EVENTOUT
OPAMP1_VINM,
COMP1_INP, ADC1_IN6
12 G7 16 F3 25 K3 PA2 I/O FT_a -
TIM2_CH3, USART2_TX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT, TIM15_CH1,
EVENTOUT
COMP2_INM,
ADC1_IN7,
WKUP4,LSCO
13 F6 17 G3 26 L3 PA3 I/O TT_a -
TIM2_CH4, USART2_RX,
LPUART1_RX,
QUADSPI_CLK,
SAI1_MCLK_A,
TIM15_CH2, EVENTOUT
OPAMP1_VOUT,
COMP2_INP, ADC1_IN8
- - 18 C2 27 E3 VSS S - - - -
-H719D228 H3 VDD S - - - -
14 G6 20 H3 29 M3 PA4 I/O TT_a -
SPI1_NSS, SPI3_NSS,
USART2_CK, SAI1_FS_B,
LPTIM2_OUT, EVENTOUT
COMP1_INM,
COMP2_INM,
ADC1_IN9, DAC1_OUT1
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
Pinouts and pin description STM32L451xx
64/207 DS11910 Rev 5
15 F5 21 F4 30 K4 PA5 I/O TT_a -
TIM2_CH1, TIM2_ETR,
SPI1_SCK,
DFSDM1_CKOUT,
LPTIM2_ETR, EVENTOUT
COMP1_INM,
COMP2_INM,
ADC1_IN10
16 H6 22 G4 31 L4 PA6 I/O FT_a -
TIM1_BKIN, TIM3_CH1,
SPI1_MISO, COMP1_OUT,
USART3_CTS,
LPUART1_CTS,
QUADSPI_BK1_IO3,
TIM1_BKIN_COMP2,
TIM16_CH1, EVENTOUT
ADC1_IN11
17 E5 23 H4 32 M4 PA7 I/O FT_fa -
TIM1_CH1N, TIM3_CH2,
I2C3_SCL, SPI1_MOSI,
DFSDM1_DATIN0,
QUADSPI_BK1_IO2,
COMP2_OUT, EVENTOUT
ADC1_IN12
- E4 24 H5 33 K5 PC4 I/O FT_a - USART3_TX, EVENTOUT COMP1_INM,
ADC1_IN13
- G5 25 H6 34 L5 PC5 I/O FT_a - USART3_RX, EVENTOUT COMP1_INP,
ADC1_IN14, WKUP5
18 H5 26 F5 35 M5 PB0 I/O FT_a -
TIM1_CH2N, TIM3_CH3,
SPI1_NSS,
DFSDM1_CKIN0,
USART3_CK,
QUADSPI_BK1_IO1,
COMP1_OUT,
SAI1_EXTCLK,
EVENTOUT
ADC1_IN15
19 F4 27 G5 36 M6 PB1 I/O FT_a -
TIM1_CH3N, TIM3_CH4,
DFSDM1_DATIN0,
USART3_RTS_DE,
LPUART1_RTS_DE,
QUADSPI_BK1_IO0,
LPTIM2_IN1, EVENTOUT
COMP1_INM,
ADC1_IN16
20 G4 28 G6 37 L6 PB2 I/O FT_a -
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA,
DFSDM1_CKIN0,
EVENTOUT
COMP1_INP
----38M7 PE7 I/O FT -
TIM1_ETR,
DFSDM1_DATIN2,
SAI1_SD_B, EVENTOUT
-
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
DS11910 Rev 5 65/207
STM32L451xx Pinouts and pin description
86
----39L7 PE8 I/O FT -
TIM1_CH1N,
DFSDM1_CKIN2,
SAI1_SCK_B, EVENTOUT
-
----40M8 PE9 I/O FT -
TIM1_CH1,
DFSDM1_CKOUT,
SAI1_FS_B, EVENTOUT
-
----41L8 PE10 I/O FT -
TIM1_CH2N, TSC_G5_IO1,
QUADSPI_CLK,
SAI1_MCLK_B,
EVENTOUT
-
----42M9 PE11 I/O FT -
TIM1_CH2, TSC_G5_IO2,
QUADSPI_BK1_NCS,
EVENTOUT
-
----43L9 PE12 I/O FT -
TIM1_CH3N, SPI1_NSS,
TSC_G5_IO3,
QUADSPI_BK1_IO0,
EVENTOUT
-
----44M10PE13 I/O FT -
TIM1_CH3, SPI1_SCK,
TSC_G5_IO4,
QUADSPI_BK1_IO1,
EVENTOUT
-
----45M11PE14 I/O FT -
TIM1_CH4, TIM1_BKIN2,
TIM1_BKIN2_COMP2,
SPI1_MISO,
QUADSPI_BK1_IO2,
EVENTOUT
-
----46M12PE15 I/O FT -
TIM1_BKIN,
TIM1_BKIN_COMP1,
SPI1_MOSI,
QUADSPI_BK1_IO3,
EVENTOUT
-
21 H4 29 G7 47 L10 PB10 I/O FT_f -
TIM2_CH3, I2C4_SCL,
I2C2_SCL, SPI2_SCK,
USART3_TX,
LPUART1_RX,
TSC_SYNC,
QUADSPI_CLK,
COMP1_OUT,
SAI1_SCK_A, EVENTOUT
-
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
Pinouts and pin description STM32L451xx
66/207 DS11910 Rev 5
22 H3 30 H7 48 L11 PB11 I/O FT_f -
TIM2_CH4, I2C4_SDA,
I2C2_SDA, USART3_RX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT, EVENTOUT
-
23 H2 31 D6 49 F12 VSS S - - - -
24 H1 32 E6 50 G12 VDD S - - - -
25 G3 33 H8 51 L12 PB12 I/O FT -
TIM1_BKIN,
TIM1_BKIN_COMP2,
I2C2_SMBA, SPI2_NSS,
DFSDM1_DATIN1,
USART3_CK,
LPUART1_RTS_DE,
TSC_G1_IO1, CAN1_RX,
SAI1_FS_A, TIM15_BKIN,
EVENTOUT
-
26 G2 34 G8 52 K12 PB13 I/O FT_f -
TIM1_CH1N, I2C2_SCL,
SPI2_SCK,
DFSDM1_CKIN1,
USART3_CTS,
LPUART1_CTS,
TSC_G1_IO2, CAN1_TX,
SAI1_SCK_A,
TIM15_CH1N, EVENTOUT
-
27 G1 35 F8 53 K11 PB14 I/O FT_f -
TIM1_CH2N, I2C2_SDA,
SPI2_MISO,
DFSDM1_DATIN2,
USART3_RTS_DE,
TSC_G1_IO3,
SAI1_MCLK_A,
TIM15_CH1, EVENTOUT
-
28 F1 36 F7 54 K10 PB15 I/O FT -
RTC_REFIN, TIM1_CH3N,
SPI2_MOSI,
DFSDM1_CKIN2,
TSC_G1_IO4, SAI1_SD_A,
TIM15_CH2, EVENTOUT
-
----55K9 PD8 I/O FT -USART3_TX, EVENTOUT -
----56K8 PD9 I/O FT -USART3_RX, EVENTOUT -
----57J12 PD10 I/O FT - USART3_CK,
TSC_G6_IO1, EVENTOUT -
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
DS11910 Rev 5 67/207
STM32L451xx Pinouts and pin description
86
----58J11 PD11 I/O FT -
I2C4_SMBA,
USART3_CTS,
TSC_G6_IO2,
LPTIM2_ETR, EVENTOUT
-
----59J10 PD12 I/O FT -
I2C4_SCL,
USART3_RTS_DE,
TSC_G6_IO3,
LPTIM2_IN1, EVENTOUT
-
----60H12PD13 I/O FT -
I2C4_SDA, TSC_G6_IO4,
LPTIM2_OUT, EVENTOUT -
----61H11 PD14 I/O FT - EVENTOUT -
----62H10PD15 I/O FT - EVENTOUT -
-F237F663E12 PC6 I/O FT -
TIM3_CH1,
DFSDM1_CKIN3,
TSC_G4_IO1,
SDMMC1_D6, EVENTOUT
-
-E138E764E11 PC7 I/O FT -
TIM3_CH2,
DFSDM1_DATIN3,
TSC_G4_IO2,
SDMMC1_D7, EVENTOUT
-
-F339E865E10 PC8 I/O FT - TIM3_CH3, TSC_G4_IO3,
SDMMC1_D0, EVENTOUT -
-E240D866D12 PC9 I/O FT - TIM3_CH4, TSC_G4_IO4,
SDMMC1_D1, EVENTOUT -
29 E3 41 D7 67 D11 PA8 I/O FT -
MCO, TIM1_CH1,
DFSDM1_CKIN1,
USART1_CK,
SAI1_SCK_A,
LPTIM2_OUT, EVENTOUT
-
30 D1 42 C7 68 D10 PA9 I/O FT_f -
TIM1_CH2, I2C1_SCL,
DFSDM1_DATIN1,
USART1_TX, SAI1_FS_A,
TIM15_BKIN, EVENTOUT
-
31 C1 43 C6 69 C12 PA10 I/O FT_f -
TIM1_CH3, I2C1_SDA,
USART1_RX, SAI1_SD_A,
EVENTOUT
-
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
Pinouts and pin description STM32L451xx
68/207 DS11910 Rev 5
32 D2 44 C8 70 B12 PA11 I/O FT -
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, COMP1_OUT,
USART1_CTS, CAN1_RX,
TIM1_BKIN2_COMP1,
EVENTOUT
-
33 D3 45 B8 71 A12 PA12 I/O FT_f -
TIM1_ETR, SPI1_MOSI,
USART1_RTS_DE,
CAN1_TX, EVENTOUT
-
34 C2 46 A8 72 A11
PA13
(JTMS/
SWDIO)
I/O FT (3) JTMS/SWDAT, IR_OUT,
SAI1_SD_B, EVENTOUT -
35 B1 47 D5 - - VSS S - - - -
36 A1 48 E5 73 C11 VDD S - - - -
----74F11 VSS S - - - -
-B2- - 75G11 VDD S - - - -
37 C3 49 A7 76 A10
PA14
(JTCK/
SWCLK)
I/O FT (3)
JTCK/SWCLK,
LPTIM1_OUT, I2C1_SMBA,
I2C4_SMBA, SAI1_FS_B,
EVENTOUT
-
38 A2 50 A6 77 A9 PA15
(JTDI) I/O FT (3)
JTDI, TIM2_CH1,
TIM2_ETR, USART2_RX,
SPI1_NSS, SPI3_NSS,
USART3_RTS_DE,
UART4_RTS_DE,
TSC_G3_IO1, EVENTOUT
-
-D451B778B11 PC10 I/O FT -
TRACED1, SPI3_SCK,
USART3_TX, UART4_TX,
TSC_G3_IO2,
SDMMC1_D2, EVENTOUT
-
-B352B679C10 PC11 I/O FT -
SPI3_MISO, USART3_RX,
UART4_RX, TSC_G3_IO3,
SDMMC1_D3, EVENTOUT
-
-A353C580B10 PC12 I/O FT -
TRACED3, SPI3_MOSI,
USART3_CK,
TSC_G3_IO4,
SDMMC1_CK, EVENTOUT
-
----81C9 PD0 I/O FT - SPI2_NSS, CAN1_RX,
EVENTOUT -
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
DS11910 Rev 5 69/207
STM32L451xx Pinouts and pin description
86
----82B9 PD1 I/O FT - SPI2_SCK, CAN1_TX,
EVENTOUT -
-C454B583 C8 PD2 I/O FT -
TRACED2, TIM3_ETR,
USART3_RTS_DE,
TSC_SYNC,
SDMMC1_CMD,
EVENTOUT
-
----84B8 PD3 I/O FT -
SPI2_MISO,
DFSDM1_DATIN0,
USART2_CTS,
QUADSPI_BK2_NCS,
EVENTOUT
-
----85B7 PD4 I/O FT -
SPI2_MOSI,
DFSDM1_CKIN0,
USART2_RTS_DE,
QUADSPI_BK2_IO0,
EVENTOUT
-
----86A6 PD5 I/O FT -
USART2_TX,
QUADSPI_BK2_IO1,
EVENTOUT
-
----87B6 PD6 I/O FT -
DFSDM1_DATIN1,
USART2_RX,
QUADSPI_BK2_IO2,
SAI1_SD_A, EVENTOUT
-
----88A5 PD7 I/O FT -
DFSDM1_CKIN1,
USART2_CK,
QUADSPI_BK2_IO3,
EVENTOUT
-
39 B4 55 A5 89 A8
PB3
(JTDO/
TRACE
SWO)
I/O FT_a (3)
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK,
USART1_RTS_DE,
SAI1_SCK_B, EVENTOUT
COMP2_INM
40 A4 56 A4 90 A7 PB4
(NJTRST) I/O FT_fa (3)
NJTRST, TIM3_CH1,
I2C3_SDA, SPI1_MISO,
SPI3_MISO,
USART1_CTS,
TSC_G2_IO1,
SAI1_MCLK_B,
EVENTOUT
COMP2_INP
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
Pinouts and pin description STM32L451xx
70/207 DS11910 Rev 5
41 C5 57 C4 91 C5 PB5 I/O FT -
LPTIM1_IN1, TIM3_CH2,
CAN1_RX, I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI,
USART1_CK,
TSC_G2_IO2,
COMP2_OUT, SAI1_SD_B,
TIM16_BKIN, EVENTOUT
-
42 B5 58 D3 92 B5 PB6 I/O FT_fa -
LPTIM1_ETR, I2C1_SCL,
I2C4_SCL, USART1_TX,
CAN1_TX, TSC_G2_IO3,
SAI1_FS_B, TIM16_CH1N,
EVENTOUT
COMP2_INP
43 A5 59 C3 93 B4 PB7 I/O FT_fa -
LPTIM1_IN2, I2C1_SDA,
I2C4_SDA, USART1_RX,
UART4_CTS,
TSC_G2_IO4, EVENTOUT
COMP2_INM, PVD_IN
44 B6 60 B4 94 A4
PH3-
BOOT0
(BOOT0)
I/O - - EVENTOUT BOOT0
45 A6 61 B3 95 A3 PB8 I/O FT_f -
I2C1_SCL, CAN1_RX,
SDMMC1_D4,
SAI1_MCLK_A,
TIM16_CH1, EVENTOUT
-
46 C6 62 A3 96 B3 PB9 I/O FT_f -
IR_OUT, I2C1_SDA,
SPI2_NSS, CAN1_TX,
SDMMC1_D5, SAI1_FS_A,
EVENTOUT
-
----97C3 PE0 I/O FT -TIM16_CH1, EVENTOUT -
----98A2 PE1 I/O FT - EVENTOUT -
47 A7 63 D4 99 D3 VSS S - - - -
48 A8 64 E4 100 C4 VDD S - - - -
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of
the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup
domain and RTC register descriptions in the RM0394 reference manual.
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4
pins and the internal pull-down on PA14 pin are activated.
Table 16. STM32L451xx pin definitions (continued)
Pin Number
Pin name
(function after
reset)
Pin type
I/O structure
Notes
Pin functions
LQFP48, UFQFPN48
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Alternate functions Additional functions
STM32L451xx Pinouts and pin description
DS11910 Rev 5 71/207
Table 17. Alternate function AF0 to AF7(1)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4 SPI1/SPI2/I2C4 SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
Port A
PA0-TIM2_CH1-----USART2_CTS
PA1 - TIM2_CH2 - - I2C1_SMBA SPI1_SCK - USART2_RTS_
DE
PA2-TIM2_CH3-----USART2_TX
PA3-TIM2_CH4-----USART2_RX
PA4 - - - - - SPI1_NSS SPI3_NSS USART2_CK
PA5 - TIM2_CH1 TIM2_ETR - - SPI1_SCK DFSDM1_
CKOUT -
PA6 - TIM1_BKIN TIM3_CH1 - - SPI1_MISO COMP1_OUT USART3_CTS
PA7 - TIM1_CH1N TIM3_CH2 - I2C3_SCL SPI1_MOSI DFSDM1_
DATIN0 -
PA8MCOTIM1_CH1----
DFSDM1_
CKIN1 USART1_CK
PA9 - TIM1_CH2 - - I2C1_SCL - DFSDM1_
DATIN1 USART1_TX
PA10 - TIM1_CH3 - - I2C1_SDA - - USART1_RX
PA11 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO COMP1_OUT USART1_CTS
PA12 - TIM1_ETR - - - SPI1_MOSI - USART1_RTS_
DE
PA13JTMS/SWDATIR_OUT------
PA14 JTCK/SWCLK LPTIM1_OUT - - I2C1_SMBA I2C4_SMBA - -
PA15 JTDI TIM2_CH1 TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS USART3_RTS_
DE
Pinouts and pin description STM32L451xx
72/207 DS11910 Rev 5
Port B
PB0 - TIM1_CH2N TIM3_CH3 - - SPI1_NSS DFSDM1_
CKIN0 USART3_CK
PB1 - TIM1_CH3N TIM3_CH4 - - - DFSDM1_
DATIN0
USART3_RTS_
DE
PB2 RTC_OUT LPTIM1_OUT - - I2C3_SMBA - DFSDM1_
CKIN0 -
PB3 JTDO/
TRACESWO TIM2_CH2 - - - SPI1_SCK SPI3_SCK USART1_RTS_
DE
PB4 NJTRST - TIM3_CH1 - I2C3_SDA SPI1_MISO SPI3_MISO USART1_CTS
PB5 - LPTIM1_IN1 TIM3_CH2 CAN1_RX I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK
PB6 - LPTIM1_ETR - - I2C1_SCL I2C4_SCL - USART1_TX
PB7 - LPTIM1_IN2 - - I2C1_SDA I2C4_SDA - USART1_RX
PB8----I2C1_SCL---
PB9 - IR_OUT - - I2C1_SDA SPI2_NSS - -
PB10 - TIM2_CH3 - I2C4_SCL I2C2_SCL SPI2_SCK - USART3_TX
PB11 - TIM2_CH4 - I2C4_SDA I2C2_SDA - - USART3_RX
PB12 - TIM1_BKIN - TIM1_BKIN_C
OMP2 I2C2_SMBA SPI2_NSS DFSDM1_
DATIN1 USART3_CK
PB13 - TIM1_CH1N - - I2C2_SCL SPI2_SCK DFSDM1_
CKIN1 USART3_CTS
PB14 - TIM1_CH2N - - I2C2_SDA SPI2_MISO DFSDM1_
DATIN2
USART3_RTS_
DE
PB15 RTC_REFIN TIM1_CH3N - - - SPI2_MOSI DFSDM1_
CKIN2 -
Table 17. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4 SPI1/SPI2/I2C4 SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
STM32L451xx Pinouts and pin description
DS11910 Rev 5 73/207
Port C
PC0 - LPTIM1_IN1 I2C4_SCL - I2C3_SCL - - -
PC1 TRACED0 LPTIM1_OUT I2C4_SDA - I2C3_SDA - - -
PC2 - LPTIM1_IN2 - - - SPI2_MISO DFSDM1_
CKOUT -
PC3 - LPTIM1_ETR - - - SPI2_MOSI - -
PC4-------USART3_TX
PC5-------USART3_RX
PC6 - - TIM3_CH1 - - - DFSDM1_
CKIN3 -
PC7 - - TIM3_CH2 - - - DFSDM1_
DATIN3 -
PC8--TIM3_CH3-----
PC9--TIM3_CH4-----
PC10TRACED1-----SPI3_SCKUSART3_TX
PC11------SPI3_MISOUSART3_RX
PC12TRACED3-----SPI3_MOSIUSART3_CK
PC13--------
PC14--------
PC15--------
Table 17. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4 SPI1/SPI2/I2C4 SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
Pinouts and pin description STM32L451xx
74/207 DS11910 Rev 5
Port D
PD0 - - - - - SPI2_NSS - -
PD1 - - - - - SPI2_SCK - -
PD2 TRACED2 - TIM3_ETR - - - - USART3_RTS_
DE
PD3 - - - - - SPI2_MISO DFSDM1_
DATIN0 USART2_CTS
PD4 - - - - - SPI2_MOSI DFSDM1_
CKIN0
USART2_RTS_
DE
PD5-------USART2_TX
PD6------
DFSDM1_
DATIN1 USART2_RX
PD7------
DFSDM1_
CKIN1 USART2_CK
PD8-------USART3_TX
PD9-------USART3_RX
PD10-------USART3_CK
PD11 - - - - I2C4_SMBA - - USART3_CTS
PD12 - - - - I2C4_SCL - - USART3_RTS_
DE
PD13----I2C4_SDA---
PD14--------
PD15--------
Table 17. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4 SPI1/SPI2/I2C4 SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
STM32L451xx Pinouts and pin description
DS11910 Rev 5 75/207
Port E
PE0--------
PE1--------
PE2 TRACECK - TIM3_ETR - - - - -
PE3 TRACED0 - TIM3_CH1 - - - - -
PE4 TRACED1 - TIM3_CH2 - - - DFSDM1_
DATIN3 -
PE5 TRACED2 - TIM3_CH3 - - - DFSDM1_
CKIN3 -
PE6 TRACED3 - TIM3_CH4 - - - - -
PE7-TIM1_ETR----
DFSDM1_
DATIN2 -
PE8-TIM1_CH1N----
DFSDM1_
CKIN2 -
PE9-TIM1_CH1----
DFSDM1_
CKOUT -
PE10-TIM1_CH2N------
PE11-TIM1_CH2------
PE12 - TIM1_CH3N - - - SPI1_NSS - -
PE13 - TIM1_CH3 - - - SPI1_SCK - -
PE14 - TIM1_CH4 TIM1_BKIN2 TIM1_BKIN2_
COMP2 - SPI1_MISO - -
PE15 - TIM1_BKIN - TIM1_BKIN_
COMP1 - SPI1_MOSI - -
Table 17. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4 SPI1/SPI2/I2C4 SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
Pinouts and pin description STM32L451xx
76/207 DS11910 Rev 5
Port H
PH0--------
PH1--------
PH3--------
1. Refer to Table 18 for AF8 to AF15.
Table 17. Alternate function AF0 to AF7(1) (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SYS_AF TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4 SPI1/SPI2/I2C4 SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
STM32L451xx Pinouts and pin description
DS11910 Rev 5 77/207
Table 18. Alternate function AF8 to AF15(1)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
UART4/
LPUART1/
CAN1
CAN1/TSC CAN1/
QUADSPI -
SDMMC1/
COMP1/
COMP2
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT
Port A
PA0 UART4_TX - - - COMP1_OUT SAI1_EXTCLK TIM2_ETR EVENTOUT
PA1UART4_RX-----TIM15_CH1NEVENTOUT
PA2 LPUART1_TX - QUADSPI_
BK1_NCS - COMP2_OUT - TIM15_CH1 EVENTOUT
PA3 LPUART1_RX - QUADSPI_CLK - - SAI1_MCLK_A TIM15_CH2 EVENTOUT
PA4-----SAI1_FS_BLPTIM2_OUTEVENTOUT
PA5------LPTIM2_ETREVENTOUT
PA6 LPUART1_CTS - QUADSPI_
BK1_IO3 -TIM1_BKIN_
COMP2 - TIM16_CH1 EVENTOUT
PA7 - - QUADSPI_
BK1_IO2 - COMP2_OUT - - EVENTOUT
PA8-----SAI1_SCK_ALPTIM2_OUTEVENTOUT
PA9-----SAI1_FS_ATIM15_BKINEVENTOUT
PA10-----SAI1_SD_A-EVENTOUT
PA11 - CAN1_RX - - TIM1_BKIN2_
COMP1 - - EVENTOUT
PA12 - CAN1_TX - - - - - EVENTOUT
PA13-----SAI1_SD_B-EVENTOUT
PA14-----SAI1_FS_B-EVENTOUT
PA15 UART4_RTS_
DE TSC_G3_IO1 - - - - - EVENTOUT
Pinouts and pin description STM32L451xx
78/207 DS11910 Rev 5
Port B
PB0 - - QUADSPI_
BK1_IO1 - COMP1_OUT SAI1_EXTCLK - EVENTOUT
PB1 LPUART1_RTS
_DE -QUADSPI_
BK1_IO0 - - - LPTIM2_IN1 EVENTOUT
PB2------ -EVENTOUT
PB3-----SAI1_SCK_B-EVENTOUT
PB4 - TSC_G2_IO1 - - - SAI1_MCLK_B - EVENTOUT
PB5 - TSC_G2_IO2 - - COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT
PB6 CAN1_TX TSC_G2_IO3 - - - SAI1_FS_B TIM16_CH1N EVENTOUT
PB7 UART4_CTS TSC_G2_IO4 - - - - - EVENTOUT
PB8 - CAN1_RX - - SDMMC1_D4 SAI1_MCLK_A TIM16_CH1 EVENTOUT
PB9 - CAN1_TX - - SDMMC1_D5 SAI1_FS_A - EVENTOUT
PB10 LPUART1_RX TSC_SYNC QUADSPI_CLK - COMP1_OUT SAI1_SCK_A - EVENTOUT
PB11 LPUART1_TX - QUADSPI_
BK1_NCS - COMP2_OUT - - EVENTOUT
PB12 LPUART1_RTS
_DE TSC_G1_IO1 CAN1_RX - - SAI1_FS_A TIM15_BKIN EVENTOUT
PB13 LPUART1_CTS TSC_G1_IO2 CAN1_TX - - SAI1_SCK_A TIM15_CH1N EVENTOUT
PB14 - TSC_G1_IO3 - - - SAI1_MCLK_A TIM15_CH1 EVENTOUT
PB15 - TSC_G1_IO4 - - - SAI1_SD_A TIM15_CH2 EVENTOUT
Table 18. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
UART4/
LPUART1/
CAN1
CAN1/TSC CAN1/
QUADSPI -
SDMMC1/
COMP1/
COMP2
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT
STM32L451xx Pinouts and pin description
DS11910 Rev 5 79/207
Port C
PC0LPUART1_RX-----LPTIM2_IN1EVENTOUT
PC1LPUART1_TX----- -EVENTOUT
PC2------ -EVENTOUT
PC3-----SAI1_SD_ALPTIM2_ETREVENTOUT
PC4------ -EVENTOUT
PC5------ -EVENTOUT
PC6 - TSC_G4_IO1 - - SDMMC1_D6 - - EVENTOUT
PC7 - TSC_G4_IO2 - - SDMMC1_D7 - - EVENTOUT
PC8 - TSC_G4_IO3 - - SDMMC1_D0 - - EVENTOUT
PC9 - TSC_G4_IO4 - - SDMMC1_D1 - - EVENTOUT
PC10 UART4_TX TSC_G3_IO2 - - SDMMC1_D2 - - EVENTOUT
PC11 UART4_RX TSC_G3_IO3 - - SDMMC1_D3 - - EVENTOUT
PC12 - TSC_G3_IO4 - - SDMMC1_CK - - EVENTOUT
PC13------ -EVENTOUT
PC14------ -EVENTOUT
PC15------ -EVENTOUT
Table 18. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
UART4/
LPUART1/
CAN1
CAN1/TSC CAN1/
QUADSPI -
SDMMC1/
COMP1/
COMP2
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT
Pinouts and pin description STM32L451xx
80/207 DS11910 Rev 5
Port D
PD0 - CAN1_RX - - - - - EVENTOUT
PD1 - CAN1_TX - - - - - EVENTOUT
PD2 - TSC_SYNC - - SDMMC1_
CMD - - EVENTOUT
PD3 - - QUADSPI_
BK2_NCS - - - - EVENTOUT
PD4 - - QUADSPI_
BK2_IO0 - - - - EVENTOUT
PD5 - - QUADSPI_
BK2_IO1 - - - - EVENTOUT
PD6 - - QUADSPI_
BK2_IO2 - - SAI1_SD_A - EVENTOUT
PD7 - - QUADSPI_
BK2_IO3 - - - - EVENTOUT
PD8------ -EVENTOUT
PD9------ -EVENTOUT
PD10 - TSC_G6_IO1 - - - - - EVENTOUT
PD11 - TSC_G6_IO2 - - - - LPTIM2_ETR EVENTOUT
PD12 - TSC_G6_IO3 - - - - LPTIM2_IN1 EVENTOUT
PD13 - TSC_G6_IO4 - - - - LPTIM2_OUT EVENTOUT
PD14------ -EVENTOUT
PD15------ -EVENTOUT
Table 18. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
UART4/
LPUART1/
CAN1
CAN1/TSC CAN1/
QUADSPI -
SDMMC1/
COMP1/
COMP2
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT
STM32L451xx Pinouts and pin description
DS11910 Rev 5 81/207
Port E
PE0------TIM16_CH1EVENTOUT
PE1------ -EVENTOUT
PE2 - TSC_G7_IO1 - - - SAI1_MCLK_A - EVENTOUT
PE3 - TSC_G7_IO2 - - - SAI1_SD_B - EVENTOUT
PE4 - TSC_G7_IO3 - - - SAI1_FS_A - EVENTOUT
PE5 - TSC_G7_IO4 - - - SAI1_SCK_A - EVENTOUT
PE6-----SAI1_SD_A-EVENTOUT
PE7-----SAI1_SD_B-EVENTOUT
PE8-----SAI1_SCK_B-EVENTOUT
PE9-----SAI1_FS_B-EVENTOUT
PE10 - TSC_G5_IO1 QUADSPI_CLK - - SAI1_MCLK_B - EVENTOUT
PE11 - TSC_G5_IO2 QUADSPI_
BK1_NCS - - - - EVENTOUT
PE12 - TSC_G5_IO3 QUADSPI_
BK1_IO0 - - - - EVENTOUT
PE13 - TSC_G5_IO4 QUADSPI_
BK1_IO1 - - - - EVENTOUT
PE14 - - QUADSPI_
BK1_IO2 - - - - EVENTOUT
PE15 - - QUADSPI_
BK1_IO3 - - - - EVENTOUT
Port H
PH0------ -EVENTOUT
PH1------ -EVENTOUT
PH3------ -EVENTOUT
Table 18. Alternate function AF8 to AF15(1) (continued)
Port
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
UART4/
LPUART1/
CAN1
CAN1/TSC CAN1/
QUADSPI -
SDMMC1/
COMP1/
COMP2
SAI1 TIM2/TIM15/
TIM16/LPTIM2 EVENTOUT
Pinouts and pin description STM32L451xx
82/207 DS11910 Rev 5
1. Refer to Table 17 for AF0 to AF7.
DS11910 Rev 5 83/207
STM32L451xx Memory mapping
86
5 Memory mapping
Figure 13. STM32L451xx memory map
MSv40981V2
0xFFFF FFFF
0xE000 0000
0xC000 0000
0xA000 1000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0
1
2
3
4
5
6
7
Cortex™-M4
with FPU
Internal
Peripherals
Peripherals
SRAM1
CODE
OTP area
System memory
Flash memory
Flash, system memory
or SRAM, depending on
BOOT configuration
AHB2
AHB1
APB2
APB1
0x5006 0C00
0x4800 0000
0x4002 4400
0x4002 0000
0x4001 5800
0x4001 0000
0x4000 9800
0x4000 0000
0x1FFF FFFF
0x1FFF 0000
0x0808 0000
0x0800 0000
0x0008 0000
0x0000 0000
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
0x1000 8000
0x1000 0000
SRAM2
QUADSPI
registers
Options Bytes
0x1FFF 7000
0x1FFF 7400
0x1FFF 7800
0x1FFF 7810
Reserved
QUADSPI registers
0xBFFF FFFF
0xA000 1400
0xA000 1000
Reserved
Reserved
Reserved
0x5FFF FFFF
0x9000 0000
QUADSPI Flash
bank
SRAM2
0x2028 0000
0xA000 0000
0x2002 7FFF
Memory mapping STM32L451xx
84/207 DS11910 Rev 5
Table 19. STM32L451xx memory map and peripheral register boundary addresses(1)
Bus Boundary address Size(bytes) Peripheral
AHB2
0x5006 0800 - 0x5006 0BFF 1 KB RNG
0x5004 0400 - 0x5006 07FF 158 KB Reserved
0x5004 0000 - 0x5004 03FF 1 KB ADC
0x5000 0000 - 0x5003 FFFF 16 KB Reserved
0x4800 2000 - 0x4FFF FFFF ~127 MB Reserved
0x4800 1C00 - 0x4800 1FFF 1 KB GPIOH
0x4800 1400 - 0x4800 1BFF 2 KB Reserved
0x4800 1000 - 0x4800 13FF 1 KB GPIOE
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
-0x4002 4400 - 0x47FF FFFF ~127 MB Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 KB TSC
0x4002 3400 - 0x4002 3FFF 1 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB FLASH registers
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0800 - 0x4002 0FFF 2 KB Reserved
0x4002 0400 - 0x4002 07FF 1 KB DMA2
0x4002 0000 - 0x4002 03FF 1 KB DMA1
APB2
0x4001 6400 - 0x4001 FFFF 39 KB Reserved
0x4001 6000 - 0x4000 63FF 1 KB DFSDM
0x4001 5800 - 0x4001 5FFF 2 KB Reserved
0x4001 5400 - 0x4000 57FF 1 KB SAI1
0x4001 4800 - 0x4000 53FF 3 KB Reserved
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved
0x4001 3000 - 0x4001 33FF 1 KB SPI1
DS11910 Rev 5 85/207
STM32L451xx Memory mapping
86
APB2
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB SDMMC1
0x4001 2000 - 0x4001 27FF 2 KB Reserved
0x4001 1C00 - 0x4001 1FFF 1 KB FIREWALL
0x4001 0800- 0x4001 1BFF 5 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0200 - 0x4001 03FF
1 KB
COMP
0x4001 0030 - 0x4001 01FF VREFBUF
0x4001 0000 - 0x4001 002F SYSCFG
APB1
0x4000 9800 - 0x4000 FFFF 26 KB Reserved
0x4000 9400 - 0x4000 97FF 1 KB LPTIM2
0x4000 8800 - 0x4000 93FF 3 KB Reserved
0x4000 8400 - 0x4000 87FF 1 KB I2C4
0x4000 8000 - 0x4000 83FF 1 KB LPUART1
0x4000 7C00 - 0x4000 7FFF 1 KB LPTIM1
0x4000 7800 - 0x4000 7BFF 1 KB OPAMP
0x4000 7400 - 0x4000 77FF 1 KB DAC1
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 6800 - 0x4000 6FFF 2 KB Reserved
0x4000 6400 - 0x4000 67FF 1 KB CAN1
0x4000 6000 - 0x4000 63FF 1 KB CRS
0x4000 5C00- 0x4000 5FFF 1 KB I2C3
0x4000 5800 - 0x4000 5BFF 1 KB I2C2
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 5000 - 0x4000 53FF 1 KB Reserved
0x4000 4C00 - 0x4000 4FFF 1 KB UART4
0x4000 4800 - 0x4000 4BFF 1 KB USART3
0x4000 4400 - 0x4000 47FF 1 KB USART2
0x4000 4000 - 0x4000 43FF 1 KB Reserved
0x4000 3C00 - 0x4000 3FFF 1 KB SPI3
0x4000 3800 - 0x4000 3BFF 1 KB SPI2
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
Table 19. STM32L451xx memory map and peripheral register boundary addresses(1)
(continued)
Bus Boundary address Size(bytes) Peripheral
Memory mapping STM32L451xx
86/207 DS11910 Rev 5
APB1
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 1400 - 0x4000 27FF 5 KB Reserved
0x4000 1000 - 0x4000 13FF 1 KB TIM6
0x4000 0800- 0x4000 0FFF 2 KB Reserved
0x4000 0400 - 0x4000 07FF 1 KB TIM3
0x4000 0000 - 0x4000 03FF 1 KB TIM2
1. The gray color is used for reserved boundary addresses.
Table 19. STM32L451xx memory map and peripheral register boundary addresses(1)
(continued)
Bus Boundary address Size(bytes) Peripheral
Figure 14. Pin loading conditions 5L Figure 15. Pin input voltage
DS11910 Rev 5 87/207
STM32L451xx Electrical characteristics
179
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 14.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 15.
Figure 14. Pin loading conditions Figure 15. Pin input voltage
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
V
IN
I I II EEG E3 I leI
Electrical characteristics STM32L451xx
88/207 DS11910 Rev 5
6.1.6 Power supply scheme
Figure 16. Power supply scheme
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
MSv43827V2
VDD
Level shifter
IO
logic
Kernel logic
(CPU, Digital
& Memories)
Backup circuitry
(LSE, RTC,
Backup registers)
IN
OUT
Regulator
GPIOs
1.55 – 3.6 V
n x 100 nF
+1 x 4.7 μF
n x VSS
n x VDD
VBAT
VCORE
Power switch
VDDIO1
ADC/
DAC/
OPAMP/
COMPs/
VREFBUF
VREF+
VREF-
VDDA
10 nF
+1 μF
VDDA
VSSA
VREF
100 nF +1 μF
DS11910 Rev 5 89/207
STM32L451xx Electrical characteristics
179
6.1.7 Current consumption measurement
Figure 17. Current consumption measurement scheme
The IDD_ALL parameters given in Table 27 to Table 39 represent the total MCU consumption
including the current supplying VDD, VDDA and VBAT.
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics,
Table 21: Current characteristics and Table 22: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
MSv41629V1
VBAT
VDD
VDDA
IDD
IDDA
IDD_VBAT
Table 20. Voltage characteristics(1)
Symbol Ratings Min Max Unit
VDDX - VSS External main supply voltage (including
VDD, VDDA, VBAT)-0.3 4.0 V
VIN(2)
Input voltage on FT_xxx pins VSS-0.3 min (VDD, VDDA) + 4.0(3)(4)
VInput voltage on TT_xx pins VSS-0.3 4.0
Input voltage on any other pins VSS-0.3 4.0
|ΔVDDx|Variations between different VDDX power
pins of the same domain -50mV
|VSSx-VSS|Variations between all the different ground
pins(5) -50mV
1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in
the permitted range.
2. VIN maximum must always be respected. Refer to Table 21: Current characteristics for the maximum allowed injected
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
Electrical characteristics STM32L451xx
90/207 DS11910 Rev 5
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 21. Current characteristics
Symbol Ratings Max Unit
∑IVDD Total current into sum of all VDD power lines (source)(1) 140
mA
∑IVSS Total current out of sum of all VSS ground lines (sink)(1) 140
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) 100
IIO(PIN)
Output current sunk by any I/O and control pin except FT_f 20
Output current sunk by any FT_f pin 20
Output current sourced by any I/O and control pin 20
∑IIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 100
Total output current sourced by sum of all I/Os and control pins(2) 100
IINJ(PIN)(3)
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,
PA5 -5/+0(4)
Injected current on PA4, PA5 -5/0
∑|IINJ(PIN)|Total injected current (sum of all I/Os and control pins)(5) 25
1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supplies,
in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 20: Voltage
characteristics for the maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
Table 22. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
DS11910 Rev 5 91/207
STM32L451xx Electrical characteristics
179
6.3 Operating conditions
6.3.1 General operating conditions
Table 23. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 80
MHzfPCLK1 Internal APB1 clock frequency - 0 80
fPCLK2 Internal APB2 clock frequency - 0 80
VDD Standard operating voltage - 1.71
(1) 3.6 V
VDDA Analog supply voltage
ADC or COMP used 1.62
3.6 V
DAC or OPAMP used 1.8
VREFBUF used 2.4
ADC, DAC, OPAMP, COMP,
VREFBUF not used 0
VBAT Backup operating voltage - 1.55 3.6 V
VIN I/O input voltage
TT_xx I/O -0.3 VDDIOx+0.3
V
All I/O except TT_xx -0.3
Min(Min(VDD,
VDDA)+3.6 V,
5.5 V)(2)(3)
PD
Power dissipation at
TA = 85 °C for suffix 6
LQFP100 - 357
mW
UFBGA100 - 267
LQFP64 - 345
UFBGA64 - 308
WLCSP64 - 377
LQFP48 - 346
UFQFPN48 - 690
PD
Power dissipation at
TA = 125 °C for suffix 3(4)
LQFP100 - 89
mW
UFBGA100 - 67
LQFP64 - 86
UFBGA64 - 77
WLCSP64 - 94
LQFP48 - 86
UFQFPN48 - 172
TA
Ambient temperature for the
suffix 6 version
Maximum power dissipation –40 85
°C
Low-power dissipation(5) –40 105
Ambient temperature for the
suffix 3 version
Maximum power dissipation –40 125
Low-power dissipation(5) –40 130
Electrical characteristics STM32L451xx
92/207 DS11910 Rev 5
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 24 are derived from tests performed under the ambient
temperature condition summarized in Table 23.
The requirements for power-up/down sequence specified in Section 3.9.1: Power supply
schemes must be respected.
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 25 are derived from tests performed under the ambient
temperature conditions summarized in Table 23: General operating conditions.
TJ Junction temperature range Suffix 6 version –40 105 °C
Suffix 3 version –40 130
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA)+3.6 V and 5.5V.
3. For operation with voltage higher than Min (VDD, VDDA) +0.3 V, the internal Pull-up and Pull-Down resistors must be
disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.8: Thermal characteristics).
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:
Thermal characteristics).
Table 23. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Table 24. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate -0∞
µs/V
VDD fall time rate 10
tVDDA
VDDA rise time rate -0∞
µs/V
VDDA fall time rate 10
Table 25. Embedded reset and power control block characteristics
Symbol Parameter Conditions(1) Min Typ Max Unit
tRSTTEMPO(2) Reset temporization after
BOR0 is detected VDD rising - 250 400 μs
VBOR0(2) Brown-out reset threshold 0 Rising edge 1.62 1.66 1.7 V
Falling edge 1.6 1.64 1.69
VBOR1 Brown-out reset threshold 1 Rising edge 2.06 2.1 2.14 V
Falling edge 1.96 2 2.04
VBOR2 Brown-out reset threshold 2 Rising edge 2.26 2.31 2.35 V
Falling edge 2.16 2.20 2.24
DS11910 Rev 5 93/207
STM32L451xx Electrical characteristics
179
VBOR3 Brown-out reset threshold 3 Rising edge 2.56 2.61 2.66 V
Falling edge 2.47 2.52 2.57
VBOR4 Brown-out reset threshold 4 Rising edge 2.85 2.90 2.95 V
Falling edge 2.76 2.81 2.86
VPVD0 Programmable voltage
detector threshold 0
Rising edge 2.1 2.15 2.19 V
Falling edge 2 2.05 2.1
VPVD1 PVD threshold 1 Rising edge 2.26 2.31 2.36 V
Falling edge 2.15 2.20 2.25
VPVD2 PVD threshold 2 Rising edge 2.41 2.46 2.51 V
Falling edge 2.31 2.36 2.41
VPVD3 PVD threshold 3 Rising edge 2.56 2.61 2.66 V
Falling edge 2.47 2.52 2.57
VPVD4 PVD threshold 4 Rising edge 2.69 2.74 2.79 V
Falling edge 2.59 2.64 2.69
VPVD5 PVD threshold 5 Rising edge 2.85 2.91 2.96 V
Falling edge 2.75 2.81 2.86
VPVD6 PVD threshold 6 Rising edge 2.92 2.98 3.04 V
Falling edge 2.84 2.90 2.96
Vhyst_BORH0 Hysteresis voltage of BORH0
Hysteresis in
continuous
mode
-20-
mV
Hysteresis in
other mode -30-
Vhyst_BOR_PVD Hysteresis voltage of BORH
(except BORH0) and PVD --100-mV
IDD
(BOR_PVD)(2) BOR(3) (except BOR0) and
PVD consumption from VDD --1.11.6µA
VPVM3 VDDA peripheral voltage
monitoring
Rising edge 1.61 1.65 1.69 V
Falling edge 1.6 1.64 1.68
VPVM4 VDDA peripheral voltage
monitoring
Rising edge 1.78 1.82 1.86 V
Falling edge 1.77 1.81 1.85
Vhyst_PVM3 PVM3 hysteresis - - 10 - mV
Vhyst_PVM4 PVM4 hysteresis - - 10 - mV
IDD (PVM1)
(2) PVM1 consumption from VDD --0.2-µA
IDD
(PVM3/PVM4)
(2)
PVM3 and PVM4
consumption from VDD --2-µA
Table 25. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
Electrical characteristics STM32L451xx
94/207 DS11910 Rev 5
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
DS11910 Rev 5 95/207
STM32L451xx Electrical characteristics
179
6.3.4 Embedded voltage reference
The parameters given in Table 26 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions.
Table 26. Embedded internal voltage reference
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +130 °C 1.182 1.212 1.232 V
tS_vrefint (1) ADC sampling time when
reading the internal reference
voltage
-4
(2) --µs
tstart_vrefint Start time of reference voltage
buffer when ADC is enable --812
(2) µs
IDD(VREFINTBUF)
VREFINT buffer consumption
from VDD when converted by
ADC
- - 12.5 20(2) µA
∆VREFINT
Internal reference voltage
spread over the temperature
range
VDD = 3 V - 5 7.5(2) mV
TCoeff Temperature coefficient –40°C < TA < +130°C - 30 50(2) ppm/°C
ACoeff Long term stability 1000 hours, T = 25°C - 300 1000(2) ppm
VDDCoeff Voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200(2) ppm/V
VREFINT_DIV1 1/4 reference voltage
-
24 25 26
%
VREFINT
VREFINT_DIV2 1/2 reference voltage 49 50 51
VREFINT_DIV3 3/4 reference voltage 74 75 76
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
VREFINT
Electrical characteristics STM32L451xx
96/207 DS11910 Rev 5
Figure 18. VREFINT versus temperature
MSv40169V1
1.185
1.19
1.195
1.2
1.205
1.21
1.215
1.22
1.225
1.23
1.235
-40 -20 0 20 40 60 80 100 120
V
°C
Mean Min Max
DS11910 Rev 5 97/207
STM32L451xx Electrical characteristics
179
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 17: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0394 reference manual).
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 27 to Table 40 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 23: General
operating conditions.
Electrical characteristics STM32L451xx
98/207 DS11910 Rev 5
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF)
Symbol Parameter
Conditions TYP MAX(1)
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 2
26 MHz 2.35 2.40 2.50 2.65 3.00 2.65 2.75 2.90 3.20 3.75
mA
16 MHz 1.50 1.55 1.65 1.80 2.15 1.70 1.75 1.95 2.20 2.80
8 MHz 0.815 0.845 0.940 1.10 1.45 0.95 1.00 1.15 1.45 2.00
4 MHz 0.465 0.495 0.595 0.760 1.10 0.55 0.60 0.75 1.05 1.60
2 MHz 0.295 0.320 0.420 0.580 0.910 0.35 0.40 0.55 0.85 1.40
1 MHz 0.205 0.235 0.330 0.495 0.825 0.25 0.30 0.45 0.75 1.30
100 kHz 0.130 0.155 0.250 0.415 0.745 0.15 0.25 0.40 0.65 1.25
Range 1
80 MHz 8.45 8.50 8.65 8.90 9.25 9.45 9.50 9.75 10.10 10.75
72 MHz 7.65 7.70 7.85 8.05 8.45 8.50 8.60 8.80 9.15 9.85
64 MHz 6.80 6.85 7.00 7.20 7.60 7.60 7.70 7.90 8.25 8.90
48 MHz 5.10 5.15 5.25 5.45 5.85 5.70 5.80 6.00 6.35 7.00
32 MHz 3.45 3.50 3.60 3.80 4.20 3.85 3.95 4.15 4.50 5.15
24 MHz 2.60 2.65 2.80 2.95 3.35 2.95 3.05 3.20 3.55 4.20
16 MHz 1.80 1.85 1.95 2.15 2.50 2.00 2.10 2.30 2.60 3.25
IDD_ALL
(LPRun)
Supply
current in
Low-power
run mode
fHCLK = fMSI
all peripherals disable
2 MHz 225 260 365 550 900 275 335 470 770 1400
µA
1 MHz 130 160 270 450 800 170 225 375 670 1300
400 kHz 73.0 99.5 205 385 735 105 165 325 600 1250
100 kHz 38.0 71.0 175 355 705 70 140 315 565 1200
1. Guaranteed by characterization results, unless otherwise specified.
STM32L451xx Electrical characteristics
DS11910 Rev 5 99/207
Table 28. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable
Symbol Parameter
Conditions TYP MAX(1)
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 2
26 MHz 2.75 2.80 2.90 3.10 3.40 3.15 3.25 3.40 3.70 4.30
mA
16 MHz 1.95 2.00 2.10 2.25 2.60 2.25 2.30 2.50 2.75 3.35
8 MHz 1.10 1.15 1.25 1.40 1.75 1.25 1.35 1.50 1.75 2.35
4 MHz 0.640 0.670 0.765 0.935 1.25 0.75 0.80 0.95 1.25 1.80
2 MHz 0.380 0.405 0.505 0.670 1.00 0.45 0.50 0.65 0.95 1.50
1 MHz 0.250 0.275 0.375 0.540 0.865 0.30 0.35 0.50 0.80 1.35
100 kHz 0.135 0.160 0.255 0.420 0.750 0.15 0.25 0.40 0.65 1.25
Range 1
80 MHz 8.85 8.90 9.05 9.30 9.70 10.0 10.5 10.5 11.0 11.5
72 MHz 8.00 8.05 8.20 8.40 8.85 9.05 9.15 9.35 9.70 10.5
64 MHz 7.90 7.95 8.10 8.35 8.75 8.95 9.10 9.35 9.70 10.5
48 MHz 6.60 6.65 6.80 7.05 7.45 7.55 7.65 7.90 8.30 9.00
32 MHz 4.75 4.80 4.95 5.15 5.55 5.40 5.50 5.75 6.10 6.80
24 MHz 3.60 3.65 3.80 4.00 4.35 4.10 4.20 4.40 4.75 5.40
16 MHz 2.60 2.65 2.75 2.95 3.35 3.00 3.05 3.25 3.60 4.25
IDD_ALL
(LPRun)
Supply
current in
Low-power
run
fHCLK = fMSI
all peripherals disable
2 MHz 340 360 470 650 1000 400 455 575 880 1550
µA
1 MHz 175 215 320 500 855 225 285 420 720 1350
400 kHz 89.5 120 225 405 760 130 185 340 620 1250
100 kHz 42.5 75.5 180 360 715 75 145 320 575 1200
1. Guaranteed by characterization results, unless otherwise specified.
Electrical characteristics STM32L451xx
100/207 DS11910 Rev 5
Table 29. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1
Symbol Parameter
Conditions TYP MAX(1)
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105
°C
125
°C 25 °C 55 °C 85 °C 105
°C
125
°C
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 2
26 MHz 2.40 2.40 2.55 2.70 3.05 2.70 2.75 2.90 3.20 3.80
mA
16 MHz 1.50 1.55 1.65 1.80 2.15 1.70 1.80 1.95 2.25 2.80
8 MHz 0.820 0.850 0.950 1.10 1.45 0.95 1.00 1.15 1.45 2.00
4 MHz 0.470 0.500 0.600 0.765 1.10 0.55 0.60 0.75 1.05 1.60
2 MHz 0.295 0.325 0.420 0.585 0.915 0.35 0.40 0.55 0.85 1.40
1 MHz 0.210 0.235 0.330 0.495 0.825 0.25 0.30 0.45 0.75 1.30
100 kHz 0.130 0.155 0.250 0.415 0.750 0.15 0.25 0.35 0.65 1.25
Range 1
80 MHz 8.55 8.60 8.75 8.95 9.35 9.55 9.65 9.85 10.5 11.0
72 MHz 7.70 7.80 7.90 8.15 8.50 8.60 8.70 8.90 9.25 9.95
64 MHz 6.90 6.95 7.10 7.30 7.70 7.70 7.75 7.95 8.35 9.00
48 MHz 5.15 5.20 5.30 5.55 5.90 5.75 5.85 6.05 6.40 7.05
32 MHz 3.45 3.50 3.65 3.85 4.25 3.90 4.00 4.20 4.50 5.15
24 MHz 2.65 2.70 2.80 3.00 3.40 3.00 3.05 3.25 3.55 4.20
16 MHz 1.80 1.85 1.95 2.15 2.55 2.05 2.10 2.30 2.60 3.25
IDD_ALL
(LPRun)
Supply
current in
low-power
run mode
fHCLK = fMSI
all peripherals disable
FLASH in power-down
2 MHz 220 255 360 540 895 270 330 460 760 1400
µA
1 MHz 120 155 260 440 795 165 215 370 660 1300
400 kHz 60.0 92.0 195 375 730 100 160 330 585 1250
100 kHz 36.0 62.5 165 345 695 63.0 130 305 555 1200
1. Guaranteed by characterization results, unless otherwise specified.
DS11910 Rev 5 101/207
STM32L451xx Electrical characteristics
179
Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Symbol Parameter
Conditions TYP
Unit
TYP
Unit
-Voltage
scaling Code 25 °C 25 °C
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up
to 48 MHz
included, bypass
mode PLL ON
above 48 MHz
all peripherals
disable
Range 2
fHCLK = 26 MHz
Reduced code(1) 2.35
mA
90
µA/MHz
Coremark 2.65 102
Dhrystone 2.1 2.75 106
Fibonacci 2.60 100
While(1) 2.35 90
Range 1
fHCLK = 80 MHz
Reduced code(1) 8.45
mA
106
µA/MHz
Coremark 9.45 118
Dhrystone 2.1 9.85 123
Fibonacci 9.25 116
While(1) 8.45 106
IDD_ALL
(LPRun)
Supply
current in
Low-power
run
fHCLK = fMSI = 2 MHz
all peripherals disable
Reduced code(1) 225
µA
113
µA/MHz
Coremark 260 130
Dhrystone 2.1 270 135
Fibonacci 245 123
While(1) 285 143
1. Reduced code used for characterization results provided in Table 27, Table 28, Table 29.
Electrical characteristics STM32L451xx
102/207 DS11910 Rev 5
Table 31. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable
Symbol Parameter
Conditions TYP
Unit
TYP
Unit
-Voltage
scaling Code 25 °C 25 °C
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Range 2
fHCLK = 26 MHz
Reduced code(1) 2.75
mA
106
µA/MHz
Coremark 2.50 96
Dhrystone 2.1 2.50 96
Fibonacci 2.30 88
While(1) 2.20 84.6
Range 1
fHCLK = 80 MHz
Reduced code(1) 8.85
mA
111
µA/MHz
Coremark 8.15 102
Dhrystone 2.1 8.15 102
Fibonacci 7.55 94
While(1) 7.95 99
IDD_ALL
(LPRun)
Supply
current in
Low-power
run
fHCLK = fMSI = 2 MHz
all peripherals disable
Reduced code(1) 340
µA
170
µA/MHz
Coremark 380 190
Dhrystone 2.1 355 178
Fibonacci 355 178
While(1) 405 203
1. Reduced code used for characterization results provided in Table 27, Table 28, Table 29.
Table 32. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Symbol Parameter
Conditions TYP
Unit
TYP
Unit
-Voltage
scaling Code 25 °C 25 °C
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals
disable
Range 2
fHCLK = 26 MHz
Reduced code(1) 2.40
mA
92
µA/MHz
Coremark 2.20 85
Dhrystone 2.1 2.35 90
Fibonacci 2.20 85
While(1) 2.30 88
Range 1
fHCLK = 80 MHz
Reduced code(1) 8.55
mA
107
µA/MHz
Coremark 7.75 97
Dhrystone 2.1 8.45 106
Fibonacci 7.80 98
While(1) 8.75 109
IDD_ALL
(LPRun)
Supply
current in
Low-power
run
fHCLK = fMSI = 2 MHz
all peripherals disable
Reduced code(1) 220
µA
110
µA/MHz
Coremark 190 95
Dhrystone 2.1 215 108
Fibonacci 200 100
While(1) 210 105
1. Reduced code used for characterization results provided in Table 27, Table 28, Table 29.
STM32L451xx Electrical characteristics
DS11910 Rev 5 103/207
Table 33. Current consumption in Sleep and Low-power sleep modes, Flash ON
Symbol Parameter
Conditions TYP MAX(1)
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Sleep)
Supply
current in
sleep
mode,
fHCLK = fHSE up
to 48 MHz
included, bypass
mode
pll ON above
48 MHz all
peripherals
disable
Range 2
26 MHz 0.700 0.730 0.830 1.00 1.35 0.80 0.90 1.05 1.30 1.90
mA
16 MHz 0.475 0.505 0.605 0.775 1.10 0.55 0.65 0.80 1.05 1.65
8 MHz 0.300 0.325 0.425 0.590 0.920 0.35 0.45 0.60 0.85 1.45
4 MHz 0.210 0.235 0.335 0.500 0.830 0.25 0.30 0.45 0.75 1.35
2 MHz 0.165 0.190 0.290 0.455 0.785 0.20 0.25 0.40 0.70 1.25
1 MHz 0.145 0.170 0.265 0.430 0.760 0.15 0.25 0.40 0.65 1.25
100 kHz 0.125 0.150 0.245 0.410 0.740 0.15 0.20 0.35 0.65 1.20
Range 1
80 MHz 2.30 2.35 2.45 2.65 3.05 2.55 2.65 2.85 3.15 3.80
72 MHz 2.10 2.15 2.25 2.45 2.80 2.35 2.40 2.60 2.90 3.55
64 MHz 1.90 1.90 2.05 2.25 2.60 2.10 2.20 2.35 2.70 3.35
48 MHz 1.40 1.40 1.55 1.75 2.15 1.60 1.65 1.85 2.15 2.80
32 MHz 0.970 1.00 1.15 1.30 1.70 1.10 1.20 1.40 1.70 2.35
24 MHz 0.765 0.800 0.920 1.10 1.50 0.90 0.95 1.15 1.45 2.10
16 MHz 0.555 0.590 0.705 0.895 1.25 0.65 0.75 0.90 1.20 1.85
IDD_ALL
(LPSleep)
Supply
current in
low-power
sleep
mode
fHCLK = fMSI
all peripherals disable
2 MHz 76.0 110 215 395 745 120 185 355 610 1250
µA
1 MHz 54.0 86.5 195 370 725 88.5 160 335 585 1250
400 kHz 39.0 70.5 175 355 710 68.5 140 320 570 1200
100 kHz 35.5 75.0 195 345 715 66.0 130 305 560 1200
1. Guaranteed by characterization results, unless otherwise specified.
Electrical characteristics STM32L451xx
104/207 DS11910 Rev 5
Table 34. Current consumption in Low-power sleep modes, Flash in power-down
Symbol Parameter
Conditions TYP MAX(1)
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(LPSleep)
Supply current
in low-power
sleep mode
fHCLK = fMSI
all peripherals disable
2 MHz 76.5 105 220 410 740 110 175 350 600 1250
µA
1 MHz 54.0 81.0 195 385 715 81.5 155 325 570 1200
400 kHz 28.0 64.5 175 370 695 60.5 130 305 555 1200
100 kHz 21.5 55.0 170 360 690 58.5 120 300 550 1200
1. Guaranteed by characterization results, unless otherwise specified.
Table 35. Current consumption in Stop 2 mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Stop 2)
Supply current in
Stop 2 mode,
RTC disabled
-
1.8 V 2.05 5.40 19.0 44.0 97.0 4.00 11.5 41.5 100 220
µA
2.4 V 2.10 5.45 19.0 44.5 98.5 4.05 11.5 42.0 100 225
3 V 2.05 5.55 19.5 45.0 100 4.10 12.0 43.0 105 230
3.6 V 2.05 5.65 20.0 46.5 105 4.20 12.0 44.0 105 235
IDD_ALL
(Stop 2 with
RTC)
Supply current in
Stop 2 mode,
RTC enabled
RTC clocked by LSI
1.8 V 2.30 5.65 19.0 44.0 97.0 4.50 12.0 42.0 100 220
µA
2.4 V 2.35 5.80 19.5 44.5 99.0 4.65 12.0 42.5 100 225
3 V 2.50 5.90 20.0 45.5 100 4.90 12.5 43.5 105 230
3.6 V 2.60 6.15 20.5 47.0 105 5.20 13.0 44.5 105 235
RTC clocked by LSE
bypassed at 32768 Hz
1.8 V 2.60 6.05 21.0 48.0 97.0 - - - - -
2.4 V 2.55 6.20 21.0 49.0 98.5 - - - - -
3 V 2.80 6.35 21.5 49.5 100 - - - - -
3.6 V 2.85 6.60 22.5 51.5 105 - - - - -
RTC clocked by LSE
quartz(2)
in low drive mode
1.8 V 2.40 5.70 19.0 44.5 98.0 - - - - -
2.4 V 2.50 5.85 19.5 45.0 99.5 - - - - -
3 V 2.60 6.00 20.0 46.0 100 - - - - -
3.6 V 2.65 6.25 20.5 47.0 105 - - - - -
STM32L451xx Electrical characteristics
DS11910 Rev 5 105/207
IDD_ALL
(wakeup from
Stop 2)
Supply current
during wakeup
from Stop 2
mode
Wakeup clock is
MSI = 48 MHz,
voltage Range 1.
See (3).
3 V1.85---------
mA
Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (3).
3 V1.50---------
Wakeup clock is
HSI16 = 16 MHz,
voltage Range 1.
See (3).
3 V1.55---------
1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 42: Low-power mode wakeup timings.
Table 35. Current consumption in Stop 2 mode (continued)
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
Electrical characteristics STM32L451xx
106/207 DS11910 Rev 5
Table 36. Current consumption in Stop 1 mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Stop 1)
Supply
current in
Stop 1 mode,
RTC disabled
-
1.8 V 9.85 29.0 100 225 430 17.0 49.5 185 395 850
µA
2.4 V 9.85 29.5 100 225 435 17.0 49.5 185 395 850
3 V 9.90 29.5 100 225 435 17.5 50.0 185 400 850
3.6 V 10.0 28.0 105 230 410 17.5 50.5 190 405 860
IDD_ALL
(Stop 1 with
RTC)
Supply
current in stop
1 mode,
RTC enabled
RTC clocked by LSI
1.8 V 10.5 29.5 100 225 430 17.0 50.0 185 395 840
µA
2.4 V 10.5 29.5 100 225 435 17.0 50.5 185 395 845
3 V 10.5 30.0 105 225 435 17.5 50.5 185 400 855
3.6 V 10.5 30.0 105 230 440 17.5 51.5 190 405 860
RTC clocked by LSE
bypassed, at 32768 Hz
1.8 V 10.0 29.5 100 225 435 - - - - -
2.4 V 10.0 29.5 100 225 435 - - - - -
3 V 10.5 30.0 105 225 440 - - - - -
3.6 V 11.0 30.5 105 230 440 - - - - -
RTC clocked by LSE quartz(2)
in low drive mode
1.8 V 10.0 29.0 99.5 220 435 - - - - -
2.4 V 10.0 29.0 99.5 220 435 - - - - -
3 V 10.0 29.0 100 220 440 - - - - -
3.6 V 10.5 29.5 100 225 440 - - - - -
IDD_ALL
(wakeup
from Stop1)
Supply
current during
wakeup from
Stop 1
Wakeup clock MSI = 48 MHz,
voltage Range 1.
See (3).
3 V1.15---------
mA
Wakeup clock MSI = 4 MHz,
voltage Range 2.
See (3).
3 V1.20---------
Wakeup clock HSI16 =
16 MHz, voltage Range 1.
See (3).
3 V1.20---------
1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 42: Low-power mode wakeup timings.
STM32L451xx Electrical characteristics
DS11910 Rev 5 107/207
Table 37. Current consumption in Stop 0
Symbol Parameter
Conditions TYP MAX(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Stop 0)
Supply
current in
Stop 0 mode,
RTC disabled
1.8 V 125 150 240 390 645 145 190 350 600 1150
µA
2.4 V 125 150 240 390 645 150 195 355 605 1150
3 V 125 150 245 395 650 155 195 360 610 1150
3.6 V 125 155 245 400 655 155 200 365 615 1150(2)
2. Guaranteed by test in production.
Electrical characteristics STM32L451xx
108/207 DS11910 Rev 5
Table 38. Current consumption in Standby mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Standby)
Supply current
in Standby
mode (backup
registers
retained),
RTC disabled
no independent watchdog
1.8 V 100 270 1200 3300 8650 205 650 3250 9250 25000
nA
2.4 V 110 305 1400 3850 10000 225 750 3750 11000 29000
3 V 125 360 1650 4550 12000 290 950 4450 13000 33500
3.6 V 160 445 2000 5500 14500 355 1150 5250 15000 38500
with independent
watchdog
1.8 V 265 435 1350 3450 8700 - - - - -
2.4 V 335 540 1650 4100 10500 - - - - -
3 V 420 655 1950 4850 12500 - - - - -
3.6 V 580 895 2450 5950 14500 - - - - -
IDD_ALL
(Standby
with RTC)
Supply current
in Standby
mode (backup
registers
retained),
RTC enabled
RTC clocked by LSI, no
independent watchdog
1.8 V 345 505 1400 3450 8600 720 1150 3750 9550 25000
nA
2.4 V 420 620 1650 4050 10000 875 1450 4400 11500 29000
3 V 510 745 2000 4750 12000 1070 1700 5100 13500 34000
3.6 V 635 915 2450 5900 14500 1320 2100 6000 15500 39000
RTC clocked by LSI, with
independent watchdog
1.8 V 375 540 1450 3550 8800 - - - - -
2.4 V 490 690 1800 4250 10500 - - - - -
3 V 620 860 2150 5100 12500 - - - - -
3.6 V 845 1150 2700 6200 15000 - - - - -
RTC clocked by LSE
bypassed at 32768Hz
1.8 V 395 - - - - - - - - -
nA
2.4 V 500 - - - - - - - - -
3 V 625 - - - - - - - - -
3.6 V 795 - - - - - - - - -
RTC clocked by LSE
quartz (2) in low drive mode
1.8 V 375 550 1500 3550 8800 - - - - -
2.4 V 460 665 1750 4250 10500 - - - - -
3 V 565 810 2100 5050 12500 - - - - -
3.6 V 720 1000 2600 5900 15000 - - - - -
STM32L451xx Electrical characteristics
DS11910 Rev 5 109/207
IDD_ALL
(SRAM2)(3)
Supply current
to be added in
Standby mode
when SRAM2
is retained
-
1.8 V 250 730 2700 6350 13850 575 1800 6350 14500 32000
nA
2.4 V 250 740 2700 6150 14000 620 1800 6450 14500 32000
3 V 255 740 2700 6450 13500 645 1850 6500 15000 32500
3.6 V 255 755 2800 6500 13500 790 1950 6500 15000 33000
IDD_ALL
(wakeup
from
Standby)
Supply current
during wakeup
from Standby
mode
Wakeup clock is
MSI = 4 MHz.
See (4).
3 V2.00---------mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby
+ RTC) + IDD_ALL(SRAM2).
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 42: Low-power mode wakeup timings.
Table 38. Current consumption in Standby mode (continued)
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
Table 39. Current consumption in Shutdown mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_ALL
(Shutdown)
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
disabled
-
1.8 V 19.0 120 720 2200 6400 38.0 350 2050 6350 19500
nA
2.4 V 26.0 145 855 2600 7450 62.0 400 2400 7450 22500
3 V 37.0 185 1050 3100 8700 105 500 2850 8750 26000
3.6 V 67.0 260 1350 3950 11000 160 650 3500 10500 30000
Electrical characteristics STM32L451xx
110/207 DS11910 Rev 5
IDD_ALL
(Shutdown
with RTC)
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
enabled
RTC clocked by LSE
bypassed at 32768 Hz
1.8 V 165 275 950 2600 6550 - - - - -
nA
2.4 V 235 370 1150 3100 7650 - - - - -
3 V 325 485 1450 3750 9050 - - - - -
3.6 V 445 655 1900 4800 11500 - - - - -
RTC clocked by LSE
quartz (2) in low drive
mode
1.8 V 290 410 1050 2550 6700 - - - - -
2.4 V 375 515 1250 3050 7800 - - - - -
3 V 480 645 1550 3700 8800 - - - - -
3.6 V 625 840 1950 4950 11500 - - - - -
IDD_ALL
(wakeup from
Shutdown)
Supply current
during wakeup
from Shutdown
mode
Wakeup clock is
MSI = 4 MHz.
See (3).
3 V 1.00 - - - - - - - - - mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 42: Low-power mode wakeup timings.
Table 39. Current consumption in Shutdown mode (continued)
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
Table 40. Current consumption in VBAT mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
BAT 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
IDD_VBAT
(VBAT)
Backup domain
supply current
RTC disabled
1.8 V 3.00 - - - - - - - - -
nA
2.4 V 4.00 - - - - - - - - -
3 V 5.00 - - - - - - - - -
3.6 V 11.0 - - - - - - - - -
RTC enabled and
clocked by LSE
bypassed at 32768 Hz
1.8 V 145 165 285 550 - - - - - -
2.4 V 205 235 370 670 - - - - - -
3 V 285 315 470 820 - - - - - -
3.6 V 375 430 715 1350 - - - - - -
1. Guaranteed by characterization results, unless otherwise specified.
DS11910 Rev 5 111/207
STM32L451xx Electrical characteristics
179
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Ta ble 61: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 41: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Electrical characteristics STM32L451xx
112/207 DS11910 Rev 5
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 41. The MCU is placed
under the following conditions:
All I/O pins are in Analog mode
The given value is calculated by measuring the difference of the current consumptions:
when the peripheral is clocked on
when the peripheral is clocked off
Ambient operating temperature and supply voltage conditions summarized in Table 20:
Voltage characteristics
The power consumption of the digital part of the on-chip peripherals is given in
Table 41. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 41. Peripheral current consumption
Peripheral Range 1 Range 2 Low-power run
and sleep Unit
AHB
Bus Matrix(1) 3.2 2.9 3.1
µA/MHz
ADC independent clock domain 0.4 0.1 0.2
ADC clock domain 2.1 1.9 1.9
CRC 0.4 0.2 0.3
DMA1 1.4 1.3 1.4
DMA2 1.5 1.3 1.4
FLASH 6.2 5.2 5.8
GPIOA(2) 1.7 1.4 1.6
GPIOB(2)) 1.6 1.3 1.6
GPIOC(2) 1.7 1.5 1.6
GPIOD(2) 1.8 1.6 1.7
GPIOE(2) 1.7 1.6 1.6
GPIOH(2) 0.6 0.6 0.5
QSPI 7.0 5.8 7.3
RNG independent clock domain 2.2 N/A N/A
RNG clock domain 0.5 N/A N/A
SRAM1 0.8 0.9 0.7
SRAM2 1.0 0.8 0.8
TSC 1.6 1.3 1.3
All AHB Peripherals 25.2 21.7 23.6
APB1
AHB to APB1 bridge(3) 0.9 0.7 0.9
CAN1 4.1 3.2 3.9
DAC1 2.4 1.8 2.2
DS11910 Rev 5 113/207
STM32L451xx Electrical characteristics
179
APB1
RTCA 1.7 1.1 2.1
µA/MHz
CRS 0.3 0.3 0.6
I2C1 independent clock domain 3.5 2.8 3.4
I2C1 clock domain 1.1 0.9 1.0
I2C2 independent clock domain 3.5 3.0 3.4
I2C2 clock domain 1.1 0.7 0.9
I2C3 independent clock domain 2.9 2.3 2.5
I2C3 clock domain 0.9 0.4 0.8
LPUART1 independent clock
domain 1.9 1.6 1.8
LPUART1 clock domain 0.6 0.6 0.6
LPTIM1 independent clock
domain 2.9 2.4 2.8
LPTIM1 clock domain 0.8 0.4 0.7
LPTIM2 independent clock
domain 3.1 2.7 3.9
LPTIM2 clock domain 0.8 0.7 0.8
OPAMP 0.4 0.2 0.4
PWR 0.4 0.1 0.4
SPI2 1.8 1.6 1.6
SPI3 1.7 1.3 1.6
TIM2 6.2 5.0 5.9
TIM6 1.0 0.6 0.9
USART2 independent clock
domain 4.1 3.6 3.8
USART2 clock domain 1.3 0.9 1.1
USART3 independent clock
domain 4.3 3.5 4.2
USART3 clock domain 1.5 1.1 1.3
WWDG 0.5 0.5 0.5
All APB1 on 51.5 35.5 48.6
Table 41. Peripheral current consumption (continued)
Peripheral Range 1 Range 2 Low-power run
and sleep Unit
Electrical characteristics STM32L451xx
114/207 DS11910 Rev 5
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 42 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
APB2
AHB to APB2(4) 1.0 0.9 0.9
µA/MHz
FW 0.2 0.2 0.2
SAI1 independent clock domain 2.3 1.8 1.9
SAI1 clock domain 2.1 1.8 2.0
SDMMC1 independent clock
domain 4.7 3.9 3.9
SDMMC1 clock domain 2.5 1.9 1.9
SPI1 1.8 1.6 1.7
SYSCFG/VREFBUF/COMP 0.6 0.5 0.6
TIM1 8.1 6.5 7.6
TIM15 3.7 3.0 3.4
TIM16 2.7 2.1 2.6
USART1 independent clock
domain 4.8 4.2 4.6
USART1 clock domain 1.5 1.3 1.7
All APB2 on 24.2 19.9 22.6
ALL 100.9 77.1 94.8
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.
Table 41. Peripheral current consumption (continued)
Peripheral Range 1 Range 2 Low-power run
and sleep Unit
Table 42. Low-power mode wakeup timings(1)
Symbol Parameter Conditions Typ Max Unit
tWUSLEEP Wakeup time from Sleep
mode to Run mode -66
Nb of
CPU
cycles
tWULPSLEEP
Wakeup time from Low-
power sleep mode to Low-
power run mode
Wakeup in Flash with Flash in power-down
during low-power sleep mode (SLEEP_PD=1
in FLASH_ACR) and with clock MSI = 2 MHz
69
DS11910 Rev 5 115/207
STM32L451xx Electrical characteristics
179
tWUSTOP0
Wake up time from Stop 0
mode to Run mode in
Flash
Range 1 Wakeup clock MSI = 48 MHz 3.34 4.3
µs
Wakeup clock HSI16 = 16 MHz 3.7 6.5
Range 2
Wakeup clock MSI = 24 MHz 3.8 7.1
Wakeup clock HSI16 = 16 MHz 3.7 6.5
Wakeup clock MSI = 4 MHz 9.3 7.1
Wake up time from Stop 0
mode to Run mode in
SRAM1
Range 1 Wakeup clock MSI = 48 MHz 1.85 2.7
Wakeup clock HSI16 = 16 MHz 2.68 3
Range 2
Wakeup clock MSI = 24 MHz 2.47 3.4
Wakeup clock HSI16 = 16 MHz 2.68 3
Wakeup clock MSI = 4 MHz 9.67 12.5
tWUSTOP1
Wake up time from Stop 1
mode to Run in Flash
Range 1 Wakeup clock MSI = 48 MHz 6.75 7.6
µs
Wakeup clock HSI16 = 16 MHz 7.14 8
Range 2
Wakeup clock MSI = 24 MHz 7 7.82
Wakeup clock HSI16 = 16 MHz 7.14 7.9
Wakeup clock MSI = 4 MHz 10.44 11.9
Wake up time from Stop 1
mode to Run mode in
SRAM1
Range 1 Wakeup clock MSI = 48 MHz 5.21 5.9
Wakeup clock HSI16 = 16 MHz 6.23 6.9
Range 2
Wakeup clock MSI = 24 MHz 5.73 6.4
Wakeup clock HSI16 = 16 MHz 6.23 6.9
Wakeup clock MSI = 4 MHz 10.9 12.3
Wake up time from Stop 1
mode to Low-power run
mode in Flash Regulator in
low-power
mode (LPR=1
in PWR_CR1)
Wakeup clock MSI = 2 MHz
16.05 19.2
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1
17.06 20.3
Table 42. Low-power mode wakeup timings(1) (continued)
Symbol Parameter Conditions Typ Max Unit
Electrical characteristics STM32L451xx
116/207 DS11910 Rev 5
tWUSTOP2
Wake up time from Stop 2
mode to Run mode in
Flash
Range 1 Wakeup clock MSI = 48 MHz 7.93 9.1
µs
Wakeup clock HSI16 = 16 MHz 7.32 8.5
Range 2
Wakeup clock MSI = 24 MHz 8.25 9.4
Wakeup clock HSI16 = 16 MHz 7.32 8.4
Wakeup clock MSI = 4 MHz 11.43 13.3
Wake up time from Stop 2
mode to Run mode in
SRAM1
Range 1 Wakeup clock MSI = 48 MHz 5.23 6
Wakeup clock HSI16 = 16 MHz 6.33 7.1
Range 2
Wakeup clock MSI = 24 MHz 5.78 6.5
Wakeup clock HSI16 = 16 MHz 6.33 7.1
Wakeup clock MSI = 4 MHz 11.37 12.9
tWUSTBY Wakeup time from Standby
mode to Run mode Range 1 Wakeup clock MSI = 8 MHz 16.13 18.2 µs
Wakeup clock MSI = 4 MHz 24.06 26.6
tWUSTBY
SRAM2
Wakeup time from Standby
with SRAM2 to Run mode Range 1 Wakeup clock MSI = 8 MHz 16.09 18.2 µs
Wakeup clock MSI = 4 MHz 24 26.6
tWUSHDN
Wakeup time from
Shutdown mode to Run
mode
Range 1 Wakeup clock MSI = 4 MHz 255.38 316.41 µs
1. Guaranteed by characterization results.
Table 42. Low-power mode wakeup timings(1) (continued)
Symbol Parameter Conditions Typ Max Unit
Table 43. Regulator modes transition times(1)
Symbol Parameter Conditions Typ Max Unit
tWULPRUN Wakeup time from Low-power run mode to
Run mode(2) Code run with MSI 2 MHz 5 7
µs
tVOST Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3) Code run with MSI 24 MHz 20 40
1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 44. Wakeup time using USART/LPUART(1)
Symbol Parameter Conditions Typ Max Unit
tWUUSART
tWULPUART
Wakeup time needed to calculate the
maximum USART/LPUART baudrate
permitting to wakeup up from stop mode
when USART/LPUART clock source is
HSI16
Stop 0 mode - 1.7
µs
Stop 1 mode and Stop 2
mode -8.5
1. Guaranteed by design.
DS11910 Rev 5 117/207
STM32L451xx Electrical characteristics
179
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 19: High-speed external clock
source AC timing diagram.
Figure 19. High-speed external clock source AC timing diagram
Table 45. High-speed external user clock characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext User external clock source frequency
Voltage scaling
Range 1 -848
MHz
Voltage scaling
Range 2 -826
VHSEH OSC_IN input pin high level voltage - 0.7 VDDIOx -V
DDIOx V
VHSEL OSC_IN input pin low level voltage - VSS - 0.3 VDDIOx
tw(HSEH)
tw(HSEL) OSC_IN high or low time
Voltage scaling
Range 1 7- -
ns
Voltage scaling
Range 2 18 - -
1. Guaranteed by design.
MS19214V2
VHSEH
tf(HSE)
90%
10%
THSE
t
tr(HSE)
VHSEL
tw(HSEH)
tw(HSEL)
Electrical characteristics STM32L451xx
118/207 DS11910 Rev 5
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 20.
Figure 20. Low-speed external clock source AC timing diagram
Table 46. Low-speed external user clock characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext User external clock source frequency - - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage - 0.7 VDDIOx -V
DDIOx V
VLSEL OSC32_IN input pin low level voltage - VSS -0.3 V
DDIOx
tw(LSEH)
tw(LSEL) OSC32_IN high or low time - 250 - - ns
1. Guaranteed by design.
MS19215V2
VLSEH
tf(LSE)
90%
10%
TLSE
t
tr(LSE)
VLSEL
tw(LSEH)
tw(LSEL)
DS11910 Rev 5 119/207
STM32L451xx Electrical characteristics
179
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 47. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 21). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Table 47. HSE oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions(2)
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 8 48 MHz
RFFeedback resistor - - 200 -
IDD(HSE) HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
--5.5
mA
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-0.44-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-0.45-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-0.68-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-0.94-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-1.77-
Gm Maximum critical crystal
transconductance Startup - - 1.5 mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
Electrical characteristics STM32L451xx
120/207 DS11910 Rev 5
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 48. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
MS19876V1
(1)
OSC_IN
OSC_OUT
RF
Bias
controlled
gain
fHSE
REXT
8 MHz
resonator
Resonator with integrated
capacitors
CL1
CL2
Table 48. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol Parameter Conditions(2) Min Typ Max Unit
IDD(LSE) LSE current consumption
LSEDRV[1:0] = 00
Low drive capability -250-
nA
LSEDRV[1:0] = 01
Medium low drive capability -315-
LSEDRV[1:0] = 10
Medium high drive capability -500-
LSEDRV[1:0] = 11
High drive capability -630-
Gmcritmax Maximum critical crystal
gm
LSEDRV[1:0] = 00
Low drive capability --0.5
µA/V
LSEDRV[1:0] = 01
Medium low drive capability - - 0.75
LSEDRV[1:0] = 10
Medium high drive capability --1.7
LSEDRV[1:0] = 11
High drive capability --2.7
tSU(LSE)(3) Startup time VDD is stabilized - 2 - s
DS11910 Rev 5 121/207
STM32L451xx Electrical characteristics
179
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 22. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
fLSE
32.768 kHz
resonator
Resonator with integrated
capacitors
CL1
CL2
Electrical characteristics STM32L451xx
122/207 DS11910 Rev 5
6.3.8 Internal clock source characteristics
The parameters given in Table 49 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 49. HSI16 oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fHSI16 HSI16 Frequency VDD=3.0 V, TA=30 °C 15.88 - 16.08 MHz
TRIM HSI16 user trimming step
Trimming code is not a
multiple of 64 0.2 0.3 0.4
%
Trimming code is a
multiple of 64 -4 -6 -8
DuCy(HSI16)(2) Duty Cycle - 45 - 55 %
Temp(HSI16) HSI16 oscillator frequency
drift over temperature
TA= 0 to 85 °C -1 - 1 %
TA= -40 to 125 °C -2 - 1.5 %
VDD(HSI16) HSI16 oscillator frequency
drift over VDD VDD=1.62 V to 3.6 V -0.1 - 0.05 %
tsu(HSI16)(2) HSI16 oscillator start-up
time - - 0.8 1.2 μs
tstab(HSI16)(2) HSI16 oscillator
stabilization time --35μs
IDD(HSI16)(2) HSI16 oscillator power
consumption - - 155 190 μA
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS11910 Rev 5 123/207
STM32L451xx Electrical characteristics
179
Figure 23. HSI16 frequency versus temperature
MSv39299V1
15.6
15.7
15.8
15.9
16
16.1
16.2
16.3
16.4
MHz
min mean max
+1%
-1%
+2%
-2%
+1.5%
-1.5%
-40 -20 0 20 40 60 80 100 120 °C
Electrical characteristics STM32L451xx
124/207 DS11910 Rev 5
Multi-speed internal (MSI) RC oscillator
Table 50. MSI oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fMSI
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI mode
Range 0 98.7 100 101.3
kHz
Range 1 197.4 200 202.6
Range 2 394.8 400 405.2
Range 3 789.6 800 810.4
Range 4 0.987 1 1.013
MHz
Range 5 1.974 2 2.026
Range 6 3.948 4 4.052
Range 7 7.896 8 8.104
Range 8 15.79 16 16.21
Range 9 23.69 24 24.31
Range 10 31.58 32 32.42
Range 11 47.38 48 48.62
PLL mode
XTAL=
32.768 kHz
Range 0 - 98.304 -
kHz
Range 1 - 196.608 -
Range 2 - 393.216 -
Range 3 - 786.432 -
Range 4 - 1.016 -
MHz
Range 5 - 1.999 -
Range 6 - 3.998 -
Range 7 - 7.995 -
Range 8 - 15.991 -
Range 9 - 23.986 -
Range 10 - 32.014 -
Range 11 - 48.005 -
TEMP(MSI)(2) MSI oscillator
frequency drift
over temperature
MSI mode
TA= -0 to 85 °C -3.5 - 3
%
TA= -40 to 125 °C -8 - 6
DS11910 Rev 5 125/207
STM32L451xx Electrical characteristics
179
VDD(MSI)(2)
MSI oscillator
frequency drift
over VDD
(reference is 3 V)
MSI mode
Range 0 to 3
VDD=1.62 V
to 3.6 V -1.2 -
0.5
%
VDD=2.4 V
to 3.6 V -0.5 -
Range 4 to 7
VDD=1.62 V
to 3.6 V -2.5 -
0.7
VDD=2.4 V
to 3.6 V -0.8 -
Range 8 to 11
VDD=1.62 V
to 3.6 V -5 -
1.2
VDD=2.4 V
to 3.6 V -1.6 -
∆FSAMPLING
(MSI)(2)(4)
Frequency
variation in
sampling mode(3) MSI mode
TA= -40 to 85 °C - 1 2
%
TA= -40 to 125 °C - 2 4
CC jitter(MSI)(4) RMS cycle-to-
cycle jitter PLL mode Range 11 - - 60 - ps
P jitter(MSI)(4) RMS Period jitter PLL mode Range 11 - - 50 - ps
tSU(MSI)(4) MSI oscillator
start-up time
Range 0 - - 10 20
us
Range 1 - - 5 10
Range 2 - - 4 8
Range 3 - - 3 7
Range 4 to 7 - - 3 6
Range 8 to 11 - - 2.5 6
tSTAB(MSI)(4) MSI oscillator
stabilization time
PLL mode
Range 11
10 % of final
frequency - - 0.25 0.5
ms
5 % of final
frequency --0.51.25
1 % of final
frequency ---2.5
Table 50. MSI oscillator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
[HA] +RangeDt03—O—Range4tu7+Range$lull 256 48MHZ 12* 16MH1 E4 32 BMHZ 16 3 lMHz IDDKHZ SOGKHZ 0.5 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.5 25.5 Freq [MHz]
Electrical characteristics STM32L451xx
126/207 DS11910 Rev 5
Figure 24. Typical current consumption versus MSI frequency
IDD(MSI)(4) MSI oscillator
power
consumption
MSI and
PLL mode
Range 0 - - 0.6 1
µA
Range 1 - - 0.8 1.2
Range 2 - - 1.2 1.7
Range 3 - - 1.9 2.5
Range 4 - - 4.7 6
Range 5 - - 6.5 9
Range 6 - - 11 15
Range 7 - - 18.5 25
Range 8 - - 62 80
Range 9 - - 85 110
Range 10 - - 110 130
Range 11 - - 155 190
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Guaranteed by design.
Table 50. MSI oscillator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11910 Rev 5 127/207
STM32L451xx Electrical characteristics
179
High-speed internal 48 MHz (HSI48) RC oscillator
Table 51. HSI48 oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fHSI48 HSI48 Frequency VDD=3.0V, TA=30°C - 48 - MHz
TRIM HSI48 user trimming step - - 0.11(2) 0.18(2) %
USER TRIM
COVERAGE HSI48 user trimming coverage ±32 steps ±3(3) ±3.5(3) -%
DuCy(HSI48) Duty Cycle - 45(2) -55
(2) %
ACCHSI48_REL
Accuracy of the HSI48 oscillator
over temperature (factory
calibrated)
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C --±3
(3)
%
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C --±4.5
(3)
DVDD(HSI48) HSI48 oscillator frequency drift
with VDD
VDD = 3 V to 3.6 V - 0.025(3) 0.05(3)
%
VDD = 1.65 V to 3.6 V - 0.05(3) 0.1(3)
tsu(HSI48) HSI48 oscillator start-up time - - 2.5(2) 6(2) μs
IDD(HSI48) HSI48 oscillator power
consumption --340
(2) 380(2) μA
NT jitter Next transition jitter
Accumulated jitter on 28 cycles(4) --+/-0.15
(2) -ns
PT jitter Paired transition jitter
Accumulated jitter on 56 cycles(4) --+/-0.25
(2) -ns
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Electrical characteristics STM32L451xx
128/207 DS11910 Rev 5
Figure 25. HSI48 frequency versus temperature
Low-speed internal (LSI) RC oscillator
6.3.9 PLL characteristics
The parameters given in Table 53 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 23: General operating conditions.
MSv40989V1
-6
-4
-2
0
2
4
6
-50 -30 -10 10 30 50 70 90 110 130
Avg min max °C
%
Table 52. LSI oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fLSI LSI Frequency VDD = 3.0 V, TA = 30 °C 31.04 - 32.96 kHz
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 29.5 - 34
tSU(LSI)(2) LSI oscillator start-
up time --80130μs
tSTAB(LSI)(2) LSI oscillator
stabilization time 5% of final frequency - 125 180 μs
IDD(LSI)(2) LSI oscillator power
consumption --110180nA
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 53. PLL, PLLSAI1 characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock(2) -4-16MHz
PLL input clock duty cycle - 45 - 55 %
DS11910 Rev 5 129/207
STM32L451xx Electrical characteristics
179
fPLL_P_OUT PLL multiplier output clock P Voltage scaling Range 1 3.0968 - 80 MHz
Voltage scaling Range 2 3.0968 - 26
fPLL_Q_OUT PLL multiplier output clock Q Voltage scaling Range 1 12 - 80 MHz
Voltage scaling Range 2 12 - 26
fPLL_R_OUT PLL multiplier output clock R Voltage scaling Range 1 12 - 80 MHz
Voltage scaling Range 2 12 - 26
fVCO_OUT PLL VCO output Voltage scaling Range 1 96 - 344 MHz
Voltage scaling Range 2 96 - 128
tLOCK PLL lock time - - 15 40 μs
Jitter RMS cycle-to-cycle jitter System clock 80 MHz -40-
±ps
RMS period jitter - 30 -
IDD(PLL) PLL power consumption on
VDD(1)
VCO freq = 96 MHz - 200 260
μAVCO freq = 192 MHz - 300 380
VCO freq = 344 MHz - 520 650
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the 2 PLLs.
Table 53. PLL, PLLSAI1 characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32L451xx
130/207 DS11910 Rev 5
6.3.10 Flash memory characteristics
Table 54. Flash memory characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Typ Max Unit
tprog 64-bit programming time - 81.69 90.76 µs
tprog_row one row (32 double
word) programming time
normal programming 2.61 2.90
ms
fast programming 1.91 2.12
tprog_page one page (2 Kbyte)
programming time
normal programming 20.91 23.24
fast programming 15.29 16.98
tERASE Page (2 KB) erase time - 22.02 24.47
tprog_bank one bank (512 Kbyte)
programming time
normal programming 5.35 5.95 s
fast programming 3.91 4.35
tME Mass erase time
(one or two banks) - 22.13 24.59 ms
IDD
Average consumption
from VDD
Write mode 3.4 -
mA
Erase mode 3.4 -
Maximum current (peak) Write mode 7 (for 2 μs) -
Erase mode 7 (for 41 μs) -
Table 55. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1)
1. Guaranteed by characterization results.
Unit
NEND Endurance TA = –40 to +105 °C 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years
1 kcycle(2) at TA = 105 °C 15
1 kcycle(2) at TA = 125 °C 7
10 kcycles(2) at TA = 55 °C 30
10 kcycles(2) at TA = 85 °C 15
10 kcycles(2) at TA = 105 °C 10
DS11910 Rev 5 131/207
STM32L451xx Electrical characteristics
179
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 56. They are based on the EMS levels and classes
defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Table 56. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-4
5A
Electrical characteristics STM32L451xx
132/207 DS11910 Rev 5
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 57. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fHCLK]Unit
8 MHz/ 80 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C,
LQFP100 package
compliant with IEC
61967-2
0.1 MHz to 30 MHz -8
dBµV
30 MHz to 130 MHz 2
130 MHz to 1 GHz 5
1 GHz to 2 GHz 8
EMI Level 2.5 -
Table 58. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Guaranteed by characterization results.
Unit
VESD(HBM) Electrostatic discharge
voltage (human body model)
TA = +25 °C, conforming
to ANSI/ESDA/JEDEC
JS-001
2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C,
conforming to ANSI/ESD
STM5.3.1
C3 250
DS11910 Rev 5 133/207
STM32L451xx Electrical characteristics
179
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 60.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 59. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II
Table 60. I/O current injection susceptibility(1)
1. Guaranteed by characterization results.
Symbol Description
Functional
susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on all pins except PA4, PA5, PE8, PE9,
PE10, PE11, PE12 -5 N/A(2)
2. Injection is not possible.
mA
Injected current on PE8, PE9, PE10, PE11, PE12 -0 N/A(2)
Injected current on PA4, PA5 pins -5 0
Electrical characteristics STM32L451xx
134/207 DS11910 Rev 5
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 61 are derived from tests
performed under the conditions summarized in Table 23: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 61. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(1)
I/O input low level
voltage 1.62 V<VDDIOx<3.6 V - - 0.3xVDDIOx (2)
V
I/O input low level
voltage 1.62 V<VDDIOx<3.6 V - - 0.39xVDDIOx-0.06 (3)
I/O input low level
voltage 1.08 V<VDDIOx<1.62 V - - 0.43xVDDIOx-0.1 (3)
VIH(1)
I/O input high level
voltage 1.62 V<VDDIOx<3.6 V 0.7xVDDIOx (2) --
V
I/O input high level
voltage 1.62 V<VDDIOx<3.6 V 0.49xVDDIOX+0.26 (3) --
I/O input high level
voltage 1.08 V<VDDIOx<1.62 V 0.61xVDDIOX+0.05 (3) --
Vhys(3) TT_xx, FT_xxx and
NRST I/O input
hysteresis
1.62 V<VDDIOx<3.6 V - 200 - mV
Ilkg
FT_xx input leakage
current(3)(4)
VIN
Max(VDDXXX)(5)(6) --±100
nA
Max(VDDXXX) ≤ VIN
Max(VDDXXX)+1 V(5)(6) --650
(3)(7)
Max(VDDXXX)+1 V <
VIN ≤ 5.5 V(3)(6) - - 200(7)
PA11, PA12, and
PC3 I/O
VIN ≤ Max(VDDXXX)
(5)(6) --±150
Max(VDDXXX) ≤ VIN
Max(VDDXXX)+1 V(5)(6) - - 2500(3)
Max(VDDXXX)+1 V <
VIN ≤ 5.5 V(5)(6) - - 250
TT_xx input leakage
current
VIN ≤ Max(VDDXXX)(7) --±150
Max(VDDXXX) ≤ VIN <
3.6 V(7) - - 2000(3)
RPU Weak pull-up
equivalent resistor (8) VIN = VSS 25 40 55 kΩ
RPD Weak pull-down
equivalent resistor(8) VIN = VDDIOx 25 40 55 kΩ
CIO I/O pin capacitance - - 5 - pF
V‘I-Vih a“ [0 except BOOTD 25 05 —vH spec 30% —vm spec 70% —vH spec m —vm spec m
DS11910 Rev 5 135/207
STM32L451xx Electrical characteristics
179
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 26 for standard I/Os, and in Figure 26 for
5 V tolerant I/Os.
Figure 26. I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ± 20 mA (with a relaxed VOL/VOH).
GPIOs PC13, PC14 and PC15 are supplied through the power switch, limiting source
capability up to 3 mA only.
1. Refer to Figure 26: I/O input characteristics.
2. Tested in production.
3. Guaranteed by design.
4. All FT_xx IO except PA11, PA12 and PC3 I/O.
5. Max(VDDXXX) is the maximum value of all the I/O supplies.
6. To sustain a voltage higher than Min(VDD, VDDA) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
7. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula:
ITotal_Ileak_max = 10 µA + [number of IOs where VIN is applied on the pad] ₓ Ilkg(Max).
8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
MSv37613V1
Tested in production CMOS requirement Vih min = 0.7xVDDIOx
Based on simulation Vih min = 0.61xV
DDIOx
+0.05 for 1.08<V
DDIOx
<1.62 or 0.49xV
DDIOx
+0.26 for V
DDIOx
>1.62
Based on simulation Vil max =0.43xV
DDIOx
-0.1 for 1.08<V
DDIOx
<1.62 or 0.39xV
DDIOx
-0.06 for V
DDIOx
>1.62
Tested in production CMOS requirement Vil max = 0.3xVdd
TTL requirement Vih min = 2V
TTL requirement Vil max = 0.8V
Electrical characteristics STM32L451xx
136/207 DS11910 Rev 5
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 20: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 20: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 23: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT
unless otherwise specified).
Table 62. Output voltage characteristics(1)
Symbol Parameter Conditions Min Max Unit
VOL Output low level voltage for an I/O pin CMOS port(2)
|IIO| = 8 mA(3)
VDDIOx ≥ 2.7 V
-0.4
V
VOH Output high level voltage for an I/O pin VDDIOx-0.4 -
VOL(4) Output low level voltage for an I/O pin TTL port(2)
|IIO| = 8 mA(5)
VDDIOx ≥ 2.7 V
-0.4
VOH(4) Output high level voltage for an I/O pin 2.4 -
VOL(4) Output low level voltage for an I/O pin PC13, PC14 and PC15
|IIO| = 3 mA
VDDIOx ≥ 2.7 V
-0.07
VOH(4) Output high level voltage for an I/O pin VDDIOx-0.35 -
VOL(4) Output low level voltage for an I/O pin |IIO| = 20 mA(5)
VDDIOx ≥ 2.7 V
-1.3
VOH(4) Output high level voltage for an I/O pin VDDIOx-1.3 -
VOL(4) Output low level voltage for an I/O pin |IIO| = 4 mA(3)
VDDIOx ≥ 1.62 V
-0.45
VOH(4) Output high level voltage for an I/O pin VDDIOx-0.45 -
VOL(4) Output low level voltage for an I/O pin |IIO| = 2 mA
1.62 V ≥ VDDIOx ≥ 1.08 V
- 0.35ₓVDDIOx
VOH(4) Output high level voltage for an I/O pin 0.65ₓVDDIOx -
VOLFM+
(4)
Output low level voltage for an FT I/O
pin in FM+ mode (FT I/O with "f"
option)
|IIO| = 20 mA
VDDIOx ≥ 2.7 V -0.4
|IIO| = 10 mA
VDDIOx ≥ 1.62 V -0.4
|IIO| = 2 mA
1.62 V ≥ VDDIOx ≥ 1.08 V -0.4
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. PC13, PC14 and PC15 are tested/characterized at their maximum current of 3 mA.
4. Guaranteed by design.
5. Not applicable to PC13, PC14 and PC15.
DS11910 Rev 5 137/207
STM32L451xx Electrical characteristics
179
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Table 63, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 23: General
operating conditions.
Table 63. I/O AC characteristics(1)(2)
Speed Symbol Parameter Conditions Min Max Unit
00
Fmax Maximum frequency
C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 5
MHz
C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 1
C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 0.1
C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 10
C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 1.5
C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 0.1
Tr/Tf Output rise and fall time
C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 25
ns
C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 52
C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 140
C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 17
C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 37
C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 110
01
Fmax Maximum frequency
C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 25
MHz
C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 10
C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 1
C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 50
C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 15
C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 1
Tr/Tf Output rise and fall time
C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 9
ns
C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 16
C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 40
C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 4.5
C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 9
C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 21
Electrical characteristics STM32L451xx
138/207 DS11910 Rev 5
10
Fmax Maximum frequency
C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 50
MHz
C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 25
C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 5
C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 100(3)
C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 37.5
C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 5
Tr/Tf Output rise and fall time
C=50 pF, 2.7 V≤VDDIOx≤3.6 V - 5.8
ns
C=50 pF, 1.62 V≤VDDIOx≤2.7 V - 11
C=50 pF, 1.08 V≤VDDIOx≤1.62 V - 28
C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 2.5
C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 5
C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 12
11
Fmax Maximum frequency
C=30 pF, 2.7 V≤VDDIOx≤3.6 V - 120(3)
MHz
C=30 pF, 1.62 V≤VDDIOx≤2.7 V - 50
C=30 pF, 1.08 V≤VDDIOx≤1.62 V - 10
C=10 pF, 2.7 V≤VDDIOx≤3.6 V - 180(3)
C=10 pF, 1.62 V≤VDDIOx≤2.7 V - 75
C=10 pF, 1.08 V≤VDDIOx≤1.62 V - 10
Tr/Tf Output rise and fall time
C=30 pF, 2.7 V≤VDDIOx≤3.6 V - 3.3
nsC=30 pF, 1.62 V≤VDDIOx≤2.7 V - 6
C=30 pF, 1.08 V≤VDDIOx≤1.62 V - 16
Fm+ Fmax Maximum frequency C=50 pF, 1.6 V≤VDDIOx≤3.6 V -1MHz
Tf Output fall time(4) -5ns
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register.
Refer to the RM0394 reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
3. This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.
4. The fall time is defined between 70% and 30% of the output waveform accordingly to I2C specification.
Table 63. I/O AC characteristics(1)(2) (continued)
Speed Symbol Parameter Conditions Min Max Unit
DS11910 Rev 5 139/207
STM32L451xx Electrical characteristics
179
Figure 27. I/O AC characteristics definition(1)
1. Refer to Table 63: I/O AC characteristics.
6.3.15 NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-
up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 23: General operating conditions.
MS32132V2
T
10%
50%
90% 10%
50%
90%
Maximum frequency is achieved if (t + t (≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by the specified capacitance.
rf
r(IO)out
tf(IO)out
t
Table 64. NRST pin characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level
voltage ---0.3V
DDIOx
V
VIH(NRST) NRST input high level
voltage -0.7V
DDIOx --
Vhys(NRST) NRST Schmitt trigger
voltage hysteresis --200-mV
RPU Weak pull-up
equivalent resistor(2) VIN = VSS 25 40 55 kΩ
VF(NRST) NRST input filtered
pulse ---70ns
VNF(NRST) NRST input not filtered
pulse 1.71 V ≤ VDD ≤ 3.6 V 350 - - ns
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
Electrical characteristics STM32L451xx
140/207 DS11910 Rev 5
Figure 28. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 64: NRST pin characteristics. Otherwise the reset is not taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
6.3.16 Extended interrupt and event controller input (EXTI) characteristics
The pulse on the interrupt input must have a minimal length in order to guarantee that it is
detected by the event controller.
6.3.17 Analog switches booster
MS19878V3
RPU
VDD
Internal reset
External
reset circuit(1)
NRST(2)
Filter
0.1 μF
Table 65. EXTI Input Characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
PLEC Pulse length to event
controller -20--ns
Table 66. Analog switches booster characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Typ Max Unit
VDD Supply voltage 1.62 - 3.6 V
tSU(BOOST) Booster startup time - - 240 µs
IDD(BOOST)
Booster consumption for
1.62 V VDD 2.0 V --250
µA
Booster consumption for
2.0 V VDD 2.7 V --500
Booster consumption for
2.7 V VDD ≤ 3.6 V --900
DS11910 Rev 5 141/207
STM32L451xx Electrical characteristics
179
6.3.18 Analog-to-Digital converter characteristics
Unless otherwise specified, the parameters given in Tabl e 67 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 23: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
Table 67. ADC characteristics(1) (2)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.62 - 3.6 V
VREF+ Positive reference voltage VDDA ≥ 2 V 2 - VDDA V
VDDA < 2 V VDDA V
VREF- Negative reference
voltage -V
SSA V
fADC ADC clock frequency Range 1 0.14 - 80 MHz
Range 2 0.14 - 26
fs
Sampling rate for FAST
channels
Resolution = 12 bits - - 5.33
Msps
Resolution = 10 bits - - 6.15
Resolution = 8 bits - - 7.27
Resolution = 6 bits - - 8.88
Sampling rate for SLOW
channels
Resolution = 12 bits - - 4.21
Resolution = 10 bits - - 4.71
Resolution = 8 bits - - 5.33
Resolution = 6 bits - - 6.15
fTRIG External trigger frequency
fADC = 80 MHz
Resolution = 12 bits - - 5.33 MHz
Resolution = 12 bits - - 15 1/fADC
VCMIN Input common mode Differential mode
(VREF++
VREF-)/2
- 0.18
(VREF++
VREF-)/2
(VREF++
VREF-)/2
+ 0.18
V
VAIN (3) Conversion voltage
range(2) -0-V
REF+ V
RAIN External input impedance - - - 50
CADC Internal sample and hold
capacitor --5-pF
tSTAB Power-up time - 1 conversion
cycle
tCAL Calibration time fADC = 80 MHz 1.45 µs
-1161/f
ADC
Electrical characteristics STM32L451xx
142/207 DS11910 Rev 5
The maximum value of RAIN can be found in Table 68: Maximum ADC RAIN.
tLATR
Trigger conversion
latency Regular and
injected channels without
conversion abort
CKMODE = 00 1.5 2 2.5
1/fADC
CKMODE = 01 - - 2.0
CKMODE = 10 - - 2.25
CKMODE = 11 - - 2.125
tLATRINJ
Trigger conversion
latency Injected channels
aborting a regular
conversion
CKMODE = 00 2.5 3 3.5
1/fADC
CKMODE = 01 - - 3.0
CKMODE = 10 - - 3.25
CKMODE = 11 - - 3.125
tsSampling time fADC = 80 MHz 0.03125 - 8.00625 µs
- 2.5 - 640.5 1/fADC
tADCVREG_STUP
ADC voltage regulator
start-up time ---20
µs
tCONV Total conversion time
(including sampling time)
fADC = 80 MHz
Resolution = 12 bits 0.1875 - 8.1625 µs
Resolution = 12 bits
ts + 12.5 cycles for
successive approximation
= 15 to 653
1/fADC
IDDA(ADC) ADC consumption from
the VDDA supply
fs = 5 Msps - 730 830
µAfs = 1 Msps - 160 220
fs = 10 ksps - 16 50
IDDV_S(ADC)
ADC consumption from
the VREF+ single ended
mode
fs = 5 Msps - 130 160
µAfs = 1 Msps - 30 40
fs = 10 ksps - 0.6 2
IDDV_D(ADC)
ADC consumption from
the VREF+ differential
mode
fs = 5 Msps - 260 310
µAfs = 1 Msps - 60 70
fs = 10 ksps - 1.3 3
1. Guaranteed by design
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4V). It is disable when VDDA ≥ 2.4 V.
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 4: Pinouts and pin description for further details.
Table 67. ADC characteristics(1) (2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
AIN
DS11910 Rev 5 143/207
STM32L451xx Electrical characteristics
179
Table 68. Maximum ADC RAIN(1)(2)
Resolution Sampling cycle
@80 MHz
Sampling time [ns]
@80 MHz
RAIN max (Ω)
Fast channels(3) Slow channels(4)
12 bits
2.5 31.25 100 N/A
6.5 81.25 330 100
12.5 156.25 680 470
24.5 306.25 1500 1200
47.5 593.75 2200 1800
92.5 1156.25 4700 3900
247.5 3093.75 12000 10000
640.5 8006.75 39000 33000
10 bits
2.5 31.25 120 N/A
6.5 81.25 390 180
12.5 156.25 820 560
24.5 306.25 1500 1200
47.5 593.75 2200 1800
92.5 1156.25 5600 4700
247.5 3093.75 12000 10000
640.5 8006.75 47000 39000
8 bits
2.5 31.25 180 N/A
6.5 81.25 470 270
12.5 156.25 1000 680
24.5 306.25 1800 1500
47.5 593.75 2700 2200
92.5 1156.25 6800 5600
247.5 3093.75 15000 12000
640.5 8006.75 50000 50000
6 bits
2.5 31.25 220 N/A
6.5 81.25 560 330
12.5 156.25 1200 1000
24.5 306.25 2700 2200
47.5 593.75 3900 3300
92.5 1156.25 8200 6800
247.5 3093.75 18000 15000
640.5 8006.75 50000 50000
1. Guaranteed by design.
Electrical characteristics STM32L451xx
144/207 DS11910 Rev 5
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4V). It is disable when VDDA ≥ 2.4 V.
3. Fast channels are: PC0, PC1, PC2, PC3, PA0, PA1.
4. Slow channels are: all ADC inputs except the fast channels.
DS11910 Rev 5 145/207
STM32L451xx Electrical characteristics
179
Table 69. ADC accuracy - limited test conditions 1(1)(2)(3)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
ET
Total
unadjusted
error
ADC clock frequency ≤
80 MHz,
Sampling rate ≤ 5.33 Msps,
VDDA = VREF+ = 3 V,
TA = 25 °C
Single
ended
Fast channel (max speed) - 4 5
LSB
Slow channel (max speed) - 4 5
Differential Fast channel (max speed) - 3.5 4.5
Slow channel (max speed) - 3.5 4.5
EO Offset
error
Single
ended
Fast channel (max speed) - 1 2.5
Slow channel (max speed) - 1 2.5
Differential Fast channel (max speed) - 1.5 2.5
Slow channel (max speed) - 1.5 2.5
EG Gain error
Single
ended
Fast channel (max speed) - 2.5 4.5
Slow channel (max speed) - 2.5 4.5
Differential Fast channel (max speed) - 2.5 3.5
Slow channel (max speed) - 2.5 3.5
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1 1.5
Slow channel (max speed) - 1 1.5
Differential Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 1.5 2.5
Slow channel (max speed) - 1.5 2.5
Differential Fast channel (max speed) - 1 2
Slow channel (max speed) - 1 2
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10.4 10.5 -
bits
Slow channel (max speed) 10.4 10.5 -
Differential Fast channel (max speed) 10.8 10.9 -
Slow channel (max speed) 10.8 10.9 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 64.4 65 -
dB
Slow channel (max speed) 64.4 65 -
Differential Fast channel (max speed) 66.8 67.4 -
Slow channel (max speed) 66.8 67.4 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 65 66 -
Slow channel (max speed) 65 66 -
Differential Fast channel (max speed) 67 68 -
Slow channel (max speed) 67 68 -
Electrical characteristics STM32L451xx
146/207 DS11910 Rev 5
THD
Total
harmonic
distortion
ADC clock frequency ≤
80 MHz,
Sampling rate ≤ 5.33 Msps,
VDDA = VREF+ = 3 V,
TA = 25 °C
Single
ended
Fast channel (max speed) - -74 -73
dB
Slow channel (max speed) - -74 -73
Differential Fast channel (max speed) - -79 -76
Slow channel (max speed) - -79 -76
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
Table 69. ADC accuracy - limited test conditions 1(1)(2)(3) (continued)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
DS11910 Rev 5 147/207
STM32L451xx Electrical characteristics
179
Table 70. ADC accuracy - limited test conditions 2(1)(2)(3)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
ET
Total
unadjusted
error
ADC clock frequency ≤
80 MHz,
Sampling rate ≤ 5.33 Msps,
2 V ≤ VDDA
Single
ended
Fast channel (max speed) - 4 6.5
LSB
Slow channel (max speed) - 4 6.5
Differential Fast channel (max speed) - 3.5 5.5
Slow channel (max speed) - 3.5 5.5
EO Offset
error
Single
ended
Fast channel (max speed) - 1 4.5
Slow channel (max speed) - 1 5
Differential Fast channel (max speed) - 1.5 3
Slow channel (max speed) - 1.5 3
EG Gain error
Single
ended
Fast channel (max speed) - 2.5 6
Slow channel (max speed) - 2.5 6
Differential Fast channel (max speed) - 2.5 3.5
Slow channel (max speed) - 2.5 3.5
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1 1.5
Slow channel (max speed) - 1 1.5
Differential Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 1.5 3.5
Slow channel (max speed) - 1.5 3.5
Differential Fast channel (max speed) - 1 3
Slow channel (max speed) - 1 2.5
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10 10.5 -
bits
Slow channel (max speed) 10 10.5 -
Differential Fast channel (max speed) 10.7 10.9 -
Slow channel (max speed) 10.7 10.9 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 62 65 -
dB
Slow channel (max speed) 62 65 -
Differential Fast channel (max speed) 66 67.4 -
Slow channel (max speed) 66 67.4 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 64 66 -
Slow channel (max speed) 64 66 -
Differential Fast channel (max speed) 66.5 68 -
Slow channel (max speed) 66.5 68 -
Electrical characteristics STM32L451xx
148/207 DS11910 Rev 5
THD
Total
harmonic
distortion
ADC clock frequency ≤
80 MHz,
Sampling rate ≤ 5.33 Msps,
2 V ≤ VDDA
Single
ended
Fast channel (max speed) - -74 -65
dB
Slow channel (max speed) - -74 -67
Differential Fast channel (max speed) - -79 -70
Slow channel (max speed) - -79 -71
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
Table 70. ADC accuracy - limited test conditions 2(1)(2)(3) (continued)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
DS11910 Rev 5 149/207
STM32L451xx Electrical characteristics
179
Table 71. ADC accuracy - limited test conditions 3(1)(2)(3)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
ET
Total
unadjusted
error
ADC clock frequency ≤
80 MHz,
Sampling rate ≤ 5.33 Msps,
1.65 V ≤ VDDA = VREF+
3.6 V,
Voltage scaling Range 1
Single
ended
Fast channel (max speed) - 5.5 7.5
LSB
Slow channel (max speed) - 4.5 6.5
Differential Fast channel (max speed) - 4.5 7.5
Slow channel (max speed) - 4.5 5.5
EO Offset
error
Single
ended
Fast channel (max speed) - 2 5
Slow channel (max speed) - 2.5 5
Differential Fast channel (max speed) - 2 3.5
Slow channel (max speed) - 2.5 3
EG Gain error
Single
ended
Fast channel (max speed) - 4.5 7
Slow channel (max speed) - 3.5 6
Differential Fast channel (max speed) - 3.5 4
Slow channel (max speed) - 3.5 5
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1.2 1.5
Slow channel (max speed) - 1.2 1.5
Differential Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 3 3.5
Slow channel (max speed) - 2.5 3.5
Differential Fast channel (max speed) - 2 2.5
Slow channel (max speed) - 2 2.5
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10 10.4 -
bits
Slow channel (max speed) 10 10.4 -
Differential Fast channel (max speed) 10.6 10.7 -
Slow channel (max speed) 10.6 10.7 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 62 64 -
dB
Slow channel (max speed) 62 64 -
Differential Fast channel (max speed) 65 66 -
Slow channel (max speed) 65 66 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 63 65 -
Slow channel (max speed) 63 65 -
Differential Fast channel (max speed) 66 67 -
Slow channel (max speed) 66 67 -
Electrical characteristics STM32L451xx
150/207 DS11910 Rev 5
THD
Total
harmonic
distortion
ADC clock frequency ≤
80 MHz,
Sampling rate ≤ 5.33 Msps,
1.65 V ≤ VDDA = VREF+
3.6 V,
Voltage scaling Range 1
Single
ended
Fast channel (max speed) - -69 -67
dB
Slow channel (max speed) - -71 -67
Differential
Fast channel (max speed) - -72 -71
Slow channel (max speed) - -72 -71
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
Table 71. ADC accuracy - limited test conditions 3(1)(2)(3) (continued)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
DS11910 Rev 5 151/207
STM32L451xx Electrical characteristics
179
Table 72. ADC accuracy - limited test conditions 4(1)(2)(3)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
ET
Total
unadjusted
error
ADC clock frequency ≤
26 MHz,
1.65 V ≤ VDDA = VREF+ ≤
3.6 V,
Voltage scaling Range 2
Single
ended
Fast channel (max speed) - 5 5.4
LSB
Slow channel (max speed) - 4 5
Differential Fast channel (max speed) - 4 5
Slow channel (max speed) - 3.5 4.5
EO Offset
error
Single
ended
Fast channel (max speed) - 2 4
Slow channel (max speed) - 2 4
Differential Fast channel (max speed) - 2 3.5
Slow channel (max speed) - 2 3.5
EG Gain error
Single
ended
Fast channel (max speed) - 4 4.5
Slow channel (max speed) - 4 4.5
Differential Fast channel (max speed) - 3 4
Slow channel (max speed) - 3 4
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1 1.5
Slow channel (max speed) - 1 1.5
Differential Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 2.5 3
Slow channel (max speed) - 2.5 3
Differential Fast channel (max speed) - 2 2.5
Slow channel (max speed) - 2 2.5
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10.2 10.5 -
bits
Slow channel (max speed) 10.2 10.5 -
Differential Fast channel (max speed) 10.6 10.7 -
Slow channel (max speed) 10.6 10.7 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 63 65 -
dB
Slow channel (max speed) 63 65 -
Differential Fast channel (max speed) 65 66 -
Slow channel (max speed) 65 66 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 64 65 -
Slow channel (max speed) 64 65 -
Differential Fast channel (max speed) 66 67 -
Slow channel (max speed) 66 67 -
Electrical characteristics STM32L451xx
152/207 DS11910 Rev 5
Figure 29. ADC accuracy characteristics
THD
Total
harmonic
distortion
ADC clock frequency ≤
26 MHz,
1.65 V ≤ VDDA = VREF+ ≤
3.6 V,
Voltage scaling Range 2
Single
ended
Fast channel (max speed) - -71 -69
dB
Slow channel (max speed) - -71 -69
Differential Fast channel (max speed) - -73 -72
Slow channel (max speed) - -73 -72
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
Table 72. ADC accuracy - limited test conditions 4(1)(2)(3) (continued)
Sym-
bol Parameter Conditions(4) Min Typ Max Unit
ET = total unajusted error: maximum deviation
between the actual and ideal transfer curves.
EO = offset error: maximum deviation
between the first actual transition and
the first ideal one.
EG = gain error: deviation between the last
ideal transition and the last actual one.
ED = differential linearity error: maximum
deviation between actual steps and the ideal ones.
EL = integral linearity error: maximum deviation
between any actual transition and the end point
correlation line.
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
7
6
5
4
3
2
1
023456
17 4093 4094 4095 4096 VDDA
VSSA
EO
ET
EL
EG
ED
1 LSB IDEAL
(1)
(3)
(2)
MS19880V2
F‘I g LJ -I|—l>|i4[>1—l II A HP
DS11910 Rev 5 153/207
STM32L451xx Electrical characteristics
179
Figure 30. Typical connection diagram using the ADC
1. Refer to Table 67: ADC characteristics for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 61: I/O static characteristics for the value of the pad capacitance). A high
Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced.
3. Refer to Table 61: I/O static characteristics for the values of Ilkg.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 16: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
MS33900V5
Sample and hold ADC converter
12-bit
converter
Cparasitic(2) Ilkg (3)
VTCADC
VDDA
RAIN(1)
VAIN
VT
AINx RADC
Electrical characteristics STM32L451xx
154/207 DS11910 Rev 5
6.3.19 Digital-to-Analog converter characteristics
Table 73. DAC characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage for
DAC ON
DAC output buffer OFF (no resistive
load on DAC1_OUT1 pin or internal
connection)
1.71 -
3.6
V
Other modes 1.80 -
VREF+ Positive reference voltage
DAC output buffer OFF (no resistive
load on DAC1_OUT1 pin or internal
connection)
1.71 -
VDDA
Other modes 1.80 -
VREF- Negative reference
voltage -V
SSA
RLResistive load DAC output
buffer ON
connected to VSSA 5- -
connected to VDDA 25 - -
ROOutput Impedance DAC output buffer OFF 9.6 11.7 13.8
RBON
Output impedance sample
and hold mode, output
buffer ON
VDD = 2.7 V - - 2
VDD = 2.0 V - - 3.5
RBOFF
Output impedance sample
and hold mode, output
buffer OFF
VDD = 2.7 V - - 16.5
VDD = 2.0 V - - 18.0
CLCapacitive load DAC output buffer ON - - 50 pF
CSH Sample and hold mode - 0.1 1 µF
VDAC_OUT Voltage on DAC1_OUT1
output
DAC output buffer ON 0.2 - VREF+
– 0.2 V
DAC output buffer OFF 0 - VREF+
tSETTLING
Settling time (full scale: for
a 12-bit code transition
between the lowest and
the highest input codes
when DAC1_OUT1
reaches final value
±0.5LSB, ±1 LSB, ±2 LSB,
±4 LSB, ±8 LSB)
Normal mode
DAC output
buffer ON
CL ≤ 50 pF,
RL ≥ 5 kΩ
±0.5 LSB - 1.7 3
µs
±1 LSB - 1.6 2.9
±2 LSB - 1.55 2.85
±4 LSB - 1.48 2.8
±8 LSB - 1.4 2.75
Normal mode DAC output buffer
OFF, ±1LSB, CL = 10 pF -22.5
tWAKEUP(2)
Wakeup time from off state
(setting the ENx bit in the
DAC Control register) until
final value ±1 LSB
Normal mode DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ -4.27.5
µs
Normal mode DAC output buffer
OFF, CL ≤ 10 pF -2 5
PSRR VDDA supply rejection ratio Normal mode DAC output buffer ON
CL ≤ 50 pF, RL = 5 kΩ, DC --80-28dB
DS11910 Rev 5 155/207
STM32L451xx Electrical characteristics
179
TW_to_W
Minimal time between two
consecutive writes into the
DAC_DORx register to
guarantee a correct
DAC1_OUT1 for a small
variation of the input code
(1 LSB)
DAC_MCR:MODEx[2:0] =
000 or 001
DAC_MCR:MODEx[2:0] =
010 or 011
CL ≤ 50 pF, RL ≥ 5 kΩ
CL ≤ 10 pF
1
1.4
--µs
tSAMP
Sampling time in sample
and hold mode (code
transition between the
lowest input code and the
highest input code when
DAC1_OUT1 reaches final
value ±1LSB)
DAC1_OUT1
pin connected
DAC output buffer
ON, CSH = 100 nF -0.73.5
ms
DAC output buffer
OFF, CSH = 100 nF -10.5 18
DAC1_OUT1
pin not
connected
(internal
connection
only)
DAC output buffer
OFF -23.5µs
Ileak Output leakage current Sample and hold mode,
DAC1_OUT1 pin connected ---
(3) nA
CIint Internal sample and hold
capacitor - 5.2 7 8.8 pF
tTRIM Middle code offset trim
time DAC output buffer ON 50 - - µs
Voffset Middle code offset for 1
trim code step
VREF+ = 3.6 V - 1500 - µV
VREF+ = 1.8 V - 750 -
IDDA(DAC) DAC consumption from
VDDA
DAC output
buffer ON
No load, middle
code (0x800) - 315 500
µA
No load, worst code
(0xF1C) - 450 670
DAC output
buffer OFF
No load, middle
code (0x800) --0.2
Sample and hold mode, CSH =
100 nF -
315 ₓ
Ton/(Ton
+Toff)
(4)
670 ₓ
Ton/(Ton
+Toff)
(4)
Table 73. DAC characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
1,
Electrical characteristics STM32L451xx
156/207 DS11910 Rev 5
Figure 31. 12-bit buffered / non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
IDDV(DAC) DAC consumption from
VREF+
DAC output
buffer ON
No load, middle
code (0x800) - 185 240
µA
No load, worst code
(0xF1C) - 340 400
DAC output
buffer OFF
No load, middle
code (0x800) - 155 205
Sample and hold mode, buffer ON,
CSH = 100 nF, worst case -
185 ₓ
Ton/(Ton
+Toff)
(4)
400 ₓ
Ton/(Ton
+Toff)
(4)
Sample and hold mode, buffer OFF,
CSH = 100 nF, worst case -
155 ₓ
Ton/(Ton
+Toff)
(4)
205 ₓ
Ton/(Ton
+Toff)
(4)
1. Guaranteed by design.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
3. Refer to Table 61: I/O static characteristics.
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0394 reference manual for more details.
Table 73. DAC characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
(1)
Buffer
12-bit
digital to
analog
converter
Buffered/non-buffered DAC
DACx_OUT
R
LOAD
C
LOAD
ai17157d
DS11910 Rev 5 157/207
STM32L451xx Electrical characteristics
179
. Table 74. DAC accuracy(1)
Symbol Parameter Conditions Min Typ Max Unit
DNL Differential non
linearity (2)
DAC output buffer ON - - ±2
LSB
DAC output buffer OFF - - ±2
- monotonicity 10 bits guaranteed
INL Integral non
linearity(3)
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ --±4
DAC output buffer OFF
CL ≤ 50 pF, no RL --±4
Offset Offset error at
code 0x800(3)
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
VREF+ = 3.6 V - - ±12
VREF+ = 1.8 V - - ±25
DAC output buffer OFF
CL ≤ 50 pF, no RL --±8
Offset1 Offset error at
code 0x001(4) DAC output buffer OFF
CL ≤ 50 pF, no RL --±5
OffsetCal
Offset Error at
code 0x800
after calibration
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
VREF+ = 3.6 V - - ±5
VREF+ = 1.8 V - - ±7
Gain Gain error(5)
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ --±0.5
%
DAC output buffer OFF
CL ≤ 50 pF, no RL --±0.5
TUE
Total
unadjusted
error
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ --±30
LSB
DAC output buffer OFF
CL ≤ 50 pF, no RL --±12
TUECal
Total
unadjusted
error after
calibration
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ --±23LSB
SNR Signal-to-noise
ratio
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
1 kHz, BW 500 kHz
-71.2-
dB
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
BW 500 kHz
-71.6-
THD Total harmonic
distortion
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz --78-
dB
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz --79-
Electrical characteristics STM32L451xx
158/207 DS11910 Rev 5
SINAD
Signal-to-noise
and distortion
ratio
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz -70.4-
dB
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz -71-
ENOB Effective
number of bits
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz -11.4-
bits
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz -11.5-
1. Guaranteed by design.
2. Difference between two consecutive codes - 1 LSB.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.
Table 74. DAC accuracy(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11910 Rev 5 159/207
STM32L451xx Electrical characteristics
179
6.3.20 Voltage reference buffer characteristics
Table 75. VREFBUF characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply
voltage
Normal mode VRS = 0 2.4 - 3.6
V
VRS = 1 2.8 - 3.6
Degraded mode(2) VRS = 0 1.65 - 2.4
VRS = 1 1.65 - 2.8
VREFBUF_
OUT
Voltage
reference
output
Normal mode VRS = 0 2.046(3) 2.048 2.049(3)
VRS = 1 2.498(3) 2.5 2.502(3)
Degraded mode(2) VRS = 0 VDDA-150 mV - VDDA
VRS = 1 VDDA-150 mV - VDDA
TRIM Trim step
resolution ---±0.05±0.1%
CL Load capacitor - - 0.5 1 1.5 µF
esr
Equivalent
Serial Resistor
of Cload
----2Ω
Iload Static load
current ----4mA
Iline_reg Line regulation 2.8 V ≤ VDDA ≤ 3.6 V Iload = 500 µA - 200 1000 ppm/V
Iload = 4 mA - 100 500
Iload_reg Load
regulation 500 μA Iload ≤4 mA Normal mode - 50 500 ppm/mA
TCoeff Temperature
coefficient
-40 °C < TJ < +125 °C - -
Tcoeff_
vrefint +
50 ppm/ °C
0 °C < TJ < +50 °C - -
Tcoeff_
vrefint +
50
PSRR Power supply
rejection
DC 40 60 - dB
100 kHz 25 40 -
tSTART Start-up time
CL = 0.5 µF(4) - 300 350
µsCL = 1.1 µF(4) - 500 650
CL = 1.5 µF(4) - 650 800
IINRUSH
Control of
maximum DC
current drive
on VREFBUF_
OUT during
start-up phase
(5)
---8-mA
Electrical characteristics STM32L451xx
160/207 DS11910 Rev 5
IDDA(VREF
BUF)
VREFBUF
consumption
from VDDA
Iload = 0 µA - 16 25
µAIload = 500 µA - 18 30
Iload = 4 mA - 35 50
1. Guaranteed by design, unless otherwise specified.
2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which follows (VDDA - drop
voltage).
3. Guaranteed by test in production.
4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the VDDA voltage should be in
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
Table 75. VREFBUF characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11910 Rev 5 161/207
STM32L451xx Electrical characteristics
179
6.3.21 Comparator characteristics
Table 76. COMP characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.62 - 3.6
VVIN Comparator input voltage
range -0-V
DDA
VBG(2) Scaler input voltage - VREFINT
VSC Scaler offset voltage - - ±5 ±10 mV
IDDA(SCALER) Scaler static consumption
from VDDA
BRG_EN=0 (bridge disable) - 200 300 nA
BRG_EN=1 (bridge enable) - 0.8 1 µA
tSTART_SCALER Scaler startup time - - 100 200 µs
tSTART
Comparator startup time to
reach propagation delay
specification
High-speed
mode
VDDA ≥ 2.7 V - - 5
µs
VDDA < 2.7 V - - 7
Medium mode VDDA ≥ 2.7 V - - 15
VDDA < 2.7 V - - 25
Ultra-low-power mode - - 40
tD(3) Propagation delay with
100 mV overdrive
High-speed
mode
VDDA ≥ 2.7 V - 55 80 ns
VDDA < 2.7 V - 65 100
Medium mode - 0.55 0.9 µs
Ultra-low-power mode - 4 7
Voffset Comparator offset error Full common
mode range --±5±20mV
Vhys Comparator hysteresis
No hysteresis - 0 -
mV
Low hysteresis - 8 -
Medium hysteresis - 15 -
High hysteresis - 27 -
Electrical characteristics STM32L451xx
162/207 DS11910 Rev 5
6.3.22 Operational amplifiers characteristics
IDDA(COMP) Comparator consumption
from VDDA
Ultra-low-
power mode
Static - 400 600
nA
With 50 kHz
±100 mV overdrive
square signal
-1200-
Medium mode
Static - 5 7
µA
With 50 kHz
±100 mV overdrive
square signal
-6-
High-speed
mode
Static - 70 100
With 50 kHz
±100 mV overdrive
square signal
-75-
Ibias Comparator input bias
current ----
(4) nA
1. Guaranteed by design, unless otherwise specified.
2. Refer to Table 26: Embedded internal voltage reference.
3. Guaranteed by characterization results.
4. Mostly I/O leakage when used in analog mode. Refer to Ilkg parameter in Table 61: I/O static characteristics.
Table 76. COMP characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 77. OPAMP characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply
voltage(2) -1.8-3.6V
CMIR Common mode
input range -0-V
DDA V
VIOFFSET Input offset
voltage
25 °C, No Load on output. - - ±1.5 mV
All voltage/Temp. - - ±3
∆VIOFFSET Input offset
voltage drift
Normal mode - ±5 - μV/°C
Low-power mode - ±10 -
TRIMOFFSETP
TRIMLPOFFSETP
Offset trim step
at low common
input voltage
(0.1 ₓ VDDA)
--0.81.1
mV
TRIMOFFSETN
TRIMLPOFFSETN
Offset trim step
at high common
input voltage
(0.9 ₓ VDDA)
--11.35
DS11910 Rev 5 163/207
STM32L451xx Electrical characteristics
179
ILOAD Drive current Normal mode VDDA ≥ 2 V - - 500
µA
Low-power mode - - 100
ILOAD_PGA Drive current in
PGA mode
Normal mode VDDA ≥ 2 V - - 450
Low-power mode - - 50
RLOAD
Resistive load
(connected to
VSSA or to
VDDA)
Normal mode
VDDA < 2 V
4--
Low-power mode 20 - -
RLOAD_PGA
Resistive load
in PGA mode
(connected to
VSSA or to
VDDA)
Normal mode
VDDA < 2 V
4.5 - -
Low-power mode 40 - -
CLOAD Capacitive load - - - 50 pF
CMRR Common mode
rejection ratio
Normal mode - -85 - dB
Low-power mode - -90 -
PSRR Power supply
rejection ratio
Normal mode CLOAD ≤ 50 pf,
RLOAD ≥ 4 kΩ DC 70 85 -
dB
Low-power mode CLOAD ≤ 50 pf,
RLOAD ≥ 20 kΩ DC 72 90 -
GBW Gain Bandwidth
Product
Normal mode VDDA ≥ 2.4 V
(OPA_RANGE = 1)
550 1600 2200
kHz
Low-power mode 100 420 600
Normal mode VDDA < 2.4 V
(OPA_RANGE = 0)
250 700 950
Low-power mode 40 180 280
SR(3)
Slew rate
(from 10 and
90% of output
voltage)
Normal mode VDDA ≥ 2.4 V -700-
V/ms
Low-power mode - 180 -
Normal mode VDDA < 2.4 V -300-
Low-power mode - 80 -
AO Open loop gain Normal mode 55 110 - dB
Low-power mode 45 110 -
VOHSAT(3) High saturation
voltage
Normal mode Iload = max or Rload =
min Input at VDDA.
VDDA -
100 --
mV
Low-power mode VDDA -
50 --
VOLSAT(3) Low saturation
voltage
Normal mode Iload = max or Rload =
min Input at 0.
- - 100
Low-power mode - - 50
φmPhase margin Normal mode - 74 - °
Low-power mode - 66 -
Table 77. OPAMP characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32L451xx
164/207 DS11910 Rev 5
GM Gain margin Normal mode - 13 - dB
Low-power mode - 20 -
tWAKEUP Wake up time
from OFF state.
Normal mode
CLOAD ≤ 50 pf,
RLOAD ≥ 4 kΩ
follower
configuration
-510
µs
Low-power mode
CLOAD ≤ 50 pf,
RLOAD ≥ 20 kΩ
follower
configuration
-1030
Ibias OPAMP input
bias current General purpose input - - -(4) nA
PGA gain(3) Non inverting
gain value -
-2-
-
-4-
-8-
-16-
Rnetwork
R2/R1 internal
resistance
values in PGA
mode(5)
PGA Gain = 2 - 80/80 -
kΩ/kΩ
PGA Gain = 4 - 120/
40 -
PGA Gain = 8 - 140/
20 -
PGA Gain = 16 - 150/
10 -
Delta R
Resistance
variation (R1 or
R2)
--15-15%
PGA gain error PGA gain error - -1 - 1 %
PGA BW
PGA bandwidth
for different non
inverting gain
Gain = 2 - - GBW/
2-
MHz
Gain = 4 - - GBW/
4-
Gain = 8 - - GBW/
8-
Gain = 16 - - GBW/
16 -
Table 77. OPAMP characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11910 Rev 5 165/207
STM32L451xx Electrical characteristics
179
6.3.23 Temperature sensor characteristics
en Voltage noise
density
Normal mode at 1 kHz, Output
loaded with 4 kΩ -500-
nV/√Hz
Low-power mode at 1 kHz, Output
loaded with 20 kΩ -600-
Normal mode at 10 kHz, Output
loaded with 4 kΩ -180-
Low-power mode at 10 kHz, Output
loaded with 20 kΩ -290-
IDDA(OPAMP)(3) OPAMP
consumption
from VDDA
Normal mode no Load, quiescent
mode
- 120 260
µA
Low-power mode - 45 100
1. Guaranteed by design, unless otherwise specified.
2. The temperature range is limited to 0 °C-125 °C when VDDA is below 2 V
3. Guaranteed by characterization results.
4. Mostly I/O leakage, when used in analog mode. Refer to Ilkg parameter in Table 61: I/O static characteristics.
5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between
OPAMP inverting input and ground. The PGA gain =1+R2/R1
Table 77. OPAMP characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 78. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VTS linearity with temperature - ±1 ±2 °C
Avg_Slope(2) Average slope 2.3 2.5 2.7 mV/°C
V30 Voltage at 30°C (±5 °C)(3) 0.742 0.76 0.785 V
tSTART
(TS_BUF)(1) Sensor Buffer Start-up time in continuous mode(4) -815µs
tSTART(1) Start-up time when entering in continuous mode(4) -70120µs
tS_temp(1) ADC sampling time when reading the temperature 5 - - µs
IDD(TS)(1) Temperature sensor consumption from VDD, when
selected by ADC -4.77 µA
1. Guaranteed by design.
2. Guaranteed by characterization results.
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 8:
Temperature sensor calibration values.
4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
BAT VBAT
Electrical characteristics STM32L451xx
166/207 DS11910 Rev 5
6.3.24 VBAT monitoring characteristics
6.3.25 Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 79. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -39-kΩ
Q Ratio on VBAT measurement - 3 - -
Er(1)
1. Guaranteed by design.
Error on Q -10 - 10 %
tS_vbat(1) ADC sampling time when reading the VBAT 12 - - µs
Table 80. VBAT charging characteristics
Symbol Parameter Conditions Min Typ Max Unit
RBC
Battery
charging
resistor
VBRS = 0 - 5 -
VBRS = 1 - 1.5 -
Table 81. TIMx(1) characteristics
1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time -1-t
TIMxCLK
fTIMxCLK = 80 MHz 12.5 - ns
fEXT Timer external clock
frequency on CH1 to CH4
-0f
TIMxCLK/2 MHz
fTIMxCLK = 80 MHz 0 40 MHz
ResTIM Timer resolution
TIMx (except
TIM2) -16bit
TIM2 - 32
tCOUNTER 16-bit counter clock
period
- 1 65536 tTIMxCLK
fTIMxCLK = 80 MHz 0.0125 819.2 µs
tMAX_COUNT Maximum possible count
with 32-bit counter
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 80 MHz - 53.68 s
DS11910 Rev 5 167/207
STM32L451xx Electrical characteristics
179
6.3.26 Communication interfaces characteristics
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0394 reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FT_f I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 82. IWDG min/max timeout period at 32 kHz (LSI)(1)
1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there
is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF Unit
/4 0 0.125 512
ms
/8 1 0.250 1024
/16 2 0.500 2048
/32 3 1.0 4096
/64 4 2.0 8192
/128 5 4.0 16384
/256 6 or 7 8.0 32768
Table 83. WWDG min/max timeout value at 80 MHz (PCLK)
Prescaler WDGTB Min timeout value Max timeout value Unit
1 0 0.0512 3.2768
ms
2 1 0.1024 6.5536
4 2 0.2048 13.1072
8 3 0.4096 26.2144
Electrical characteristics STM32L451xx
168/207 DS11910 Rev 5
Table 84. I2C analog filter characteristics(1)
1. Guaranteed by design.
Symbol ParameterMinMaxUnit
tAF
Maximum pulse width of spikes
that are suppressed by the analog
filter
50(2)
2. Spikes with widths below tAF(min) are filtered.
260(3)
3. Spikes with widths above tAF(max) are not filtered
ns
DS11910 Rev 5 169/207
STM32L451xx Electrical characteristics
179
SPI characteristics
Unless otherwise specified, the parameters given in Table 85 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 23: General operating conditions.
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 85. SPI characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK) SPI clock frequency
Master mode receiver/full duplex
2.7 < VDD < 3.6 V
Voltage Range 1
--
40
MHz
Master mode receiver/full duplex
1.71 < VDD < 3.6 V
Voltage Range 1
16
Master mode transmitter
1.71 < VDD < 3.6 V
Voltage Range 1
40
Slave mode receiver
1.71 < VDD < 3.6 V
Voltage Range 1
40
Slave mode transmitter/full duplex
2.7 < VDD < 3.6 V
Voltage Range 1
37(2)
Slave mode transmitter/full duplex
1.71 < VDD < 3.6 V
Voltage Range 1
20(2)
Voltage Range 2 13
tsu(NSS) NSS setup time Slave mode, SPI prescaler = 2 4ₓTPCLK --ns
th(NSS) NSS hold time Slave mode, SPI prescaler = 2 2ₓTPCLK --ns
tw(SCKH)
tw(SCKL) SCK high and low time Master mode TPCLK-2 TPCLK TPCLK+2 ns
tsu(MI) Data input setup time Master mode 4 - - ns
tsu(SI) Slave mode 1.5 - -
th(MI) Data input hold time Master mode 6.5 - - ns
th(SI) Slave mode 1.5 - -
ta(SO) Data output access time Slave mode 9 - 36 ns
tdis(SO) Data output disable time Slave mode 9 - 16 ns
Electrical characteristics STM32L451xx
170/207 DS11910 Rev 5
Figure 32. SPI timing diagram - slave mode and CPHA = 0
tv(SO) Data output valid time
Slave mode 2.7 < VDD < 3.6 V
Voltage Range 1 - 12.5 13.5
ns
Slave mode 1.71 < VDD < 3.6 V
Voltage Range 1 -12.524
Slave mode 1.71 < VDD < 3.6 V
Voltage Range 2 -12.533
tv(MO) Master mode - 4.5 6
th(SO) Data output hold time Slave mode 7 - - ns
th(MO) Master mode 0 - -
1. Guaranteed by characterization results.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50 %.
Table 85. SPI characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
MSv41658V1
NSS input
CPHA=0
CPOL=0
SCK input
CPHA=0
CPOL=1
MISO output
MOSI input
tsu(SI)
th(SI)
tw(SCKL)
tw(SCKH)
tc(SCK)
tr(SCK)
th(NSS)
tdis(SO)
tsu(NSS)
ta(SO) tv(SO)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
th(SO) tf(SCK)
Last bit IN
DS11910 Rev 5 171/207
STM32L451xx Electrical characteristics
179
Figure 33. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 34. SPI timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
MSv41659V1
NSS input
CPHA=1
CPOL=0
SCK input
CPHA=1
CPOL=1
MISO output
MOSI input
tsu(SI) th(SI)
tw(SCKL)
tw(SCKH)
tsu(NSS)
tc(SCK)
ta(SO) tv(SO)
First bit OUT Next bits OUT
Next bits IN
Last bit OUT
th(SO) tr(SCK)
tf(SCK) th(NSS)
tdis(SO)
First bit IN Last bit IN
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B IT1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
Electrical characteristics STM32L451xx
172/207 DS11910 Rev 5
Quad SPI characteristics
Unless otherwise specified, the parameters given in Table 86 and Table 87 for Quad SPI
are derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 23: General operating conditions, with the
following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 15 or 20 pF
Measurement points are done at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 86. Quad SPI characteristics in SDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
FCK
1/t(CK)
Quad SPI clock frequency
1.71 < VDD< 3.6 V, CLOAD = 20 pF
Voltage Range 1 --40
MHz
1.71 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1 --48
2.7 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1 --60
1.71 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2 --26
tw(CKH) Quad SPI clock high and
low time fAHBCLK= 48 MHz, presc=0 t(CK)/2-2 - t(CK)/2
ns
tw(CKL) t(CK)/2 - t(CK)/2+2
ts(IN) Data input setup time Voltage Range 1 2 - -
Voltage Range 2 3.5 - -
th(IN) Data input hold time Voltage Range 1 5 - -
Voltage Range 2 6.5 - -
tv(OUT) Data output valid time Voltage Range 1 - 1 5
Voltage Range 2 - 3 5
th(OUT) Data output hold time Voltage Range 1 0 - -
Voltage Range 2 0 - -
1. Guaranteed by characterization results.
DS11910 Rev 5 173/207
STM32L451xx Electrical characteristics
179
Table 87. QUADSPI characteristics in DDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
FCK
1/t(CK)
Quad SPI clock
frequency
1.71 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1 --40
MHz
2 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1 --48
1.71 < VDD < 3.6 V, CLOAD = 15 pF
Voltage Range 1 --48
1.71 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2 --26
tw(CKH) Quad SPI clock high
and low time fAHBCLK = 48 MHz, presc=0 t(CK)/2-2 - t(CK)/2
ns
tw(CKL) t(CK)/2 - t(CK)/2+2
tsr(IN) Data input setup time
on rising edge
Voltage Range 1 1 --
Voltage Range 2 3.5
tsf(IN) Data input setup time
on falling edge
Voltage Range 1 1 --
Voltage Range 2 1.5
thr(IN) Data input hold time
on rising edge
Voltage Range 1 6 --
Voltage Range 2 6.5
thf(IN) Data input hold time
on falling edge
Voltage Range 1 5.5 --
Voltage Range 2 5.5
tvr(OUT) Data output valid time
on rising edge
Voltage Range 1 -55.5
Voltage Range 2 9.5 14
tvf(OUT) Data output valid time
on falling edge
Voltage Range 1 -58.5
Voltage Range 2 15 19
thr(OUT) Data output hold time
on rising edge
Voltage Range 1 3.5 - -
Voltage Range 2 8 -
thf(OUT) Data output hold time
on falling edge
Voltage Range 1 3.5 - -
Voltage Range 2 13 -
1. Guaranteed by characterization results.
Electrical characteristics STM32L451xx
174/207 DS11910 Rev 5
Figure 35. Quad SPI timing diagram - SDR mode
Figure 36. Quad SPI timing diagram - DDR mode
MSv36878V1
Data output D0 D1 D2
Clock
Data input D0 D1 D2
t(CK) tw(CKH) tw(CKL)
tr(CK) tf(CK)
ts(IN) th(IN)
tv(OUT) th(OUT)
MSv36879V3
Data output IO0 IO2 IO4
Clock
Data input IO0 IO2 IO4
t(CLK) tw(CLKH) tw(CLKL)
tr(CLK) tf(CLK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
IO1 IO3 IO5
IO1 IO3 IO5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
DS11910 Rev 5 175/207
STM32L451xx Electrical characteristics
179
SAI characteristics
Unless otherwise specified, the parameters given in Table 88 for SAI are derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized inTable 23: General operating conditions, with
the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output
alternate function characteristics (CK,SD,FS).
Table 88. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCLK SAI Main clock output - - 50 MHz
fCK SAI clock frequency(2)
Master transmitter
2.7 ≤ VDD ≤ 3.6
Voltage Range 1
-18.5
MHz
Master transmitter
1.71 ≤ VDD ≤ 3.6
Voltage Range 1
-12.5
Master receiver
Voltage Range 1 -25
Slave transmitter
2.7 ≤ VDD ≤ 3.6
Voltage Range 1
-22.5
Slave transmitter
1.71 ≤ VDD ≤ 3.6
Voltage Range 1
-14.5
Slave receiver
Voltage Range 1 -25
Voltage Range 2 - 12.5
tv(FS) FS valid time
Master mode
2.7 ≤ VDD ≤ 3.6 -22
ns
Master mode
1.71 ≤ VDD ≤ 3.6 -40
th(FS) FS hold time Master mode 10 - ns
tsu(FS) FS setup time Slave mode 1 - ns
th(FS) FS hold time Slave mode 2 - ns
tsu(SD_A_MR) Data input setup time Master receiver 2 - ns
tsu(SD_B_SR) Slave receiver 1.5 -
th(SD_A_MR) Data input hold time Master receiver 5 - ns
th(SD_B_SR) Slave receiver 2.5 -
Electrical characteristics STM32L451xx
176/207 DS11910 Rev 5
Figure 37. SAI master timing waveforms
tv(SD_B_ST) Data output valid time
Slave transmitter (after enable edge)
2.7 ≤ VDD ≤ 3.6 -22
ns
Slave transmitter (after enable edge)
1.71 ≤ VDD ≤ 3.6 -34
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge) 10 - ns
tv(SD_A_MT) Data output valid time
Master transmitter (after enable edge)
2.7 ≤ VDD ≤ 3.6 -27
ns
Master transmitter (after enable edge)
1.71 ≤ VDD ≤ 3.6 -40
th(SD_A_MT) Data output hold time Master transmitter (after enable edge) 10 - ns
1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.
Table 88. SAI characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
MS32771V1
SAI_SCK_X
SAI_FS_X
(output)
1/fSCK
SAI_SD_X
(transmit)
tv(FS)
Slot n
SAI_SD_X
(receive)
th(FS)
Slot n+2
tv(SD_MT) th(SD_MT)
Slot n
tsu(SD_MR) th(SD_MR)
DS11910 Rev 5 177/207
STM32L451xx Electrical characteristics
179
Figure 38. SAI slave timing waveforms
SDMMC characteristics
Unless otherwise specified, the parameters given in Table 89 for SDIO are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 23: General operating conditions, with the following
configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output
characteristics.
Table 89. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V(1)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 4/3 -
tW(CKL) Clock low time fPP = 50 MHz 8 10 - ns
tW(CKH) Clock high time fPP = 50 MHz 8 10 - ns
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fPP = 50 MHz 3.5 - - ns
tIH Input hold time HS fPP = 50 MHz 2.5 - - ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fPP = 50 MHz - 12 13 ns
tOH Output hold time HS fPP = 50 MHz 10 - - ns
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fPP = 50 MHz 3.5 - - ns
tIHD Input hold time SD fPP = 50 MHz 3 - - ns
MS32772V1
SAI_SCK_X
SAI_FS_X
(input)
SAI_SD_X
(transmit)
tsu(FS)
Slot n
SAI_SD_X
(receive)
tw(CKH_X) th(FS)
Slot n+2
tv(SD_ST) th(SD_ST)
Slot n
tsu(SD_SR)
tw(CKL_X)
th(SD_SR)
1/fSCK
CK D, CMD (mnpm) D, CMD (\nput) L Won) ‘mew _\L— ‘OH :X X Msu” aMAES7 £17
Electrical characteristics STM32L451xx
178/207 DS11910 Rev 5
Figure 39. SDIO high-speed mode
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fPP = 50 MHz - 2 3 ns
tOHD Output hold default time SD fPP = 50 MHz 0 - - ns
1. Guaranteed by characterization results.
Table 90. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V(1)(2)
1. Guaranteed by characterization results.
2. CLOAD = 20pF.
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 4/3 -
tW(CKL) Clock low time fPP = 50 MHz 8 10 - ns
tW(CKH) Clock high time fPP = 50 MHz 8 10 - ns
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS fPP = 50 MHz 0 - - ns
tIH Input hold time HS fPP = 50 MHz 1.5 - - ns
CMD, D outputs (referenced to CK) in eMMC mode
tOV Output valid time HS fPP = 50 MHz - 13.5 15 ns
tOH Output hold time HS fPP = 50 MHz 9 - - ns
Table 89. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11910 Rev 5 179/207
STM32L451xx Electrical characteristics
179
Figure 40. SD default mode
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
ai14888
CK
D, CMD
(output)
tOVD tOHD
9: 41b T IIIIIII—r
Package information STM32L451xx
180/207 DS11910 Rev 5
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
7.1 LQFP100 package information
This LQFP is a 100-pin, 14 x 14 mm low-profile quad flat package.
Figure 41. LQFP100 - Outline
1. Drawing is not to scale.
Table 91. LQFP100 - Mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
e
IDENTIFICATION
PIN 1
GAUGE PLANE
0.25 mm
SEATING PLANE
D
D1
D3
E3
E1
E
K
ccc C
C
125
26
100
76
75 51
50
1L_ME_V5
A2
A
A1
L1
L
c
b
A1
EEEEEEE EEEEEE H% H". H". H". 7 EEEEEE EEEEEE
DS11910 Rev 5 181/207
STM32L451xx Package information
203
Figure 42. LQFP100 - Recommended footprint
1. Dimensions are expressed in millimeters.
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
Table 91. LQFP100 - Mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
75 51
5076 0.5
0.3
16.7 14.3
100 26
12.3
25
1.2
16.7
1
ai14906c
N\
Package information STM32L451xx
182/207 DS11910 Rev 5
Device marking
The following figures give examples of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 43. LQFP100 marking (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv43826V1
YWW
Revision code
Product identification(1)
Date code
Pin 1
indentifier
STM32L451
VET6 B
Optional gate mark
A1 b Mar“ 5“ area ocoooooooco OCOOOOOOOCOV 00000 00000 0000000 0000000 00 (>00 ocooooooocoo 059000000000 'l' Zn (100 baHS)
DS11910 Rev 5 183/207
STM32L451xx Package information
203
7.2 UFBGA100 package information
This UFBGA is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.
Figure 44. UFBGA100 -Outline
1. Drawing is not to scale.
Table 92. UFBGA100 - Mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D1 - 5.500 - - 0.2165 -
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E1 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
Z - 0.750 - - 0.0295 -
A0C2_ME_V5
Seating plane
A1
eZ
Z
D
M
Øb (100 balls)
A
E
TOP VIEWBOTTOM VIEW
112
A1 ball
identifier
e
A
A2
Y
X
Z
ddd Z
D1
E1
eee ZYX
fff
Ø
Ø
M
MZ
A3
A4
A1 ball
index area
Package information STM32L451xx
184/207 DS11910 Rev 5
Figure 45. UFBGA100 - Recommended footprint
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 93. UFBGA100 - Recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the solder mask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Table 92. UFBGA100 - Mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
BGA_WLCSP_FT_V1
Dsm
Dpad
<>
DS11910 Rev 5 185/207
STM32L451xx Package information
203
Figure 46. UFBGA100 marking (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv43825V1
Product identification(1)
STM32L
451VEI6
WWY
B
Date code
Pin 1 identifier
HHMMMMMWM E i g E 1 :
Package information STM32L451xx
186/207 DS11910 Rev 5
7.3 LQFP64 package information
This LQFP is a 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 47. LQFP64 - Outline
1. Drawing is not to scale.
Table 94. LQFP64 - Mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
5W_ME_V3
A1
A2
A
SEATING PLANE
ccc C
b
C
c
A1
L
L1
K
IDENTIFICATION
PIN 1
D
D1
D3
e
116
17
32
33
48
49
64
E3
E1
E
GAUGE PLANE
0.25 mm
’ ,4444444,flflflflflflflflflflfl HUD 4>+ UH flflflflflflflflflflflflfl flflflfl ‘Jfii unnnnnnnnnn P HHHHHHHHHHHHH H +
DS11910 Rev 5 187/207
STM32L451xx Package information
203
Figure 48. LQFP64 - Recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure give examples of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
Table 94. LQFP64 - Mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
48
32
49
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909c
"(1)
Package information STM32L451xx
188/207 DS11910 Rev 5
Figure 49. LQFP64 marking (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv43824V1
Date code
Pin 1 identifier
STM32L451
RET6
Product identification(1)
Revision code
B
Y WW
mwOOOOOmwmw 00000000 0000000 OOOO+OOOO 00000000 00000000 awOOOOOOO $OOOOOOO
DS11910 Rev 5 189/207
STM32L451xx Package information
203
7.4 UFBGA64 package information
This UFBGA is a 64 balls, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package.
Figure 50. UFBGA64 - Outline
1. Drawing is not to scale.
A019_ME_V1
Seating plane
A1
eF
F
D
H
Øb (64 balls)
A
E
TOP VIEWBOTTOM VIEW
18
e
A
Y
X
Z
ddd Z
D1
E1
eee Z Y X
fff
Ø
Ø
M
MZ
A3
A4
A1 ball
identifier
A1 ball
index area
A2
Table 95. UFBGA64 - Mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.080 0.130 0.180 0.0031 0.0051 0.0071
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.170 0.280 0.330 0.0067 0.0110 0.0130
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 3.450 3.500 3.550 0.1358 0.1378 0.1398
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 3.450 3.500 3.550 0.1358 0.1378 0.1398
e - 0.500 - - 0.0197 -
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
Package information STM32L451xx
190/207 DS11910 Rev 5
Figure 51. UFBGA64 - Recommended footprint
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 95. UFBGA64 - Mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
Table 96. UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
BGA_WLCSP_FT_V1
Dsm
Dpad
DS11910 Rev 5 191/207
STM32L451xx Package information
203
Figure 52. UFBGA64 marking (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv43823V1
Product identification(1)
L451REI6
WWY
B
Date code
Pin 1 identifier
F \ Tia®@®b@®g @®®®@®®® @@®@@@@@ ,®@ who; 0, ’®@®®@®@© £79©®©@©@@ T7 @®®®‘@®®® @O ®®®®O yf
Package information STM32L451xx
192/207 DS11910 Rev 5
7.5 WLCSP64 package information
This WLCSP is a 64 balls, 3.357x3.657 mm 0.4 mm pitch wafer level chip scale package.
Figure 53. WLCSP64 - Outline
1. Dimensions are expressed in millimeters.
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
3. Bump position designation per JESD 95-1, SPP-010.
FORIENTATION
REFERENCE
Ge1
e2E
D
E
e
e
BOTTOM VIEW
BUMP SIDE
D
DETAIL A
A1
A2
A
SIDE VIEW
A2
A3
b
FRONT VIEW
TOP VIEW
WAFER BACK SIDE
DETAIL A
ROTATED 90
BUMP
A2
A07P_ME_V1
DS11910 Rev 5 193/207
STM32L451xx Package information
203
Figure 54. WLCSP64 - Recommended footprint
1. Dimensions are expressed in millimeters.
Table 97. WLCSP64 - Mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3 - 0.025 - - 0.0010 -
b(2)
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 3.322 3.357 3.392 0.1308 0.1322 0.1335
E 3.622 3.657 3.692 0.1426 0.1440 0.1454
e - 0.400 - - 0.0157 -
e1 - 2.800 - - 0.1102 -
e2 - 2.800 - - 0.1102 -
F - 0.2785 - - 0.0110 -
G - 0.4285 - - 0.0169 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
BGA_WLCSP_FT_V1
Dsm
Dpad
Package information STM32L451xx
194/207 DS11910 Rev 5
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 55. WLCSP64 marking (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
Table 98. WLCSP64 - Recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
MSv43822V1
Product identification(1)
L451REY6
WW
YB
Date code
Pin 1 identifier
aNe mmmmmmm m WWWW J L_J mmmmmimmwmw i,i+i,i i WWWWW
DS11910 Rev 5 195/207
STM32L451xx Package information
203
7.6 LQFP48 package information
This LQFP is a 48 pins, 7 x 7 mm low-profile quad flat package
Figure 56. LQFP48 - Outline
1. Drawing is not to scale.
5B_ME_V2
PIN 1
IDENTIFICATION
ccc C
C
D3
0.25 mm
GAUGE PLANE
b
A1
A
A2
c
A1
L1
L
D
D1
E3
E1
E
e
12
1
13
24
25
36
37
48
SEATING
PLANE
K
Package information STM32L451xx
196/207 DS11910 Rev 5
Table 99. LQFP48 - Mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
# mymmnnmnnfl /\ i”. ‘17 Oak
DS11910 Rev 5 197/207
STM32L451xx Package information
203
Figure 57. LQFP48 - Recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 58. LQFP48 marking (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
9.70 5.80 7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911d
1348
MSv66298V1
Date code
Pin 1 identifier
CET6
Product identification(1)
Revision code
Y
Y WW
STM32L451
‘4—D‘ WT, ++
Package information STM32L451xx
198/207 DS11910 Rev 5
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
7.7 UFQFPN48 package information
This UFQFPN is a 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.
Figure 59. UFQFPN48 - Outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
A0B9_ME_V3
D
Pin 1 identifier
laser marking area
EE
DY
D2
E2
Exposed pad
area
Z
1
48
Detail Z
R 0.125 typ.
1
48
L
C 0.500x45°
pin1 corner
A
Seating
plane
A1
b
e
ddd
Detail Y
T
47—» <74» nunnnnnnnnnn‘="" +h4="" dddddddu="" m="" “£2="" ;:nnnnnnnnnnnnifi="" +j—k="" ‘="" 54.74»="" dddddddddd?=""><74»>
DS11910 Rev 5 199/207
STM32L451xx Package information
203
Figure 60. UFQFPN48 - Recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Table 100. UFQFPN48 - Mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031
7.30
7.30
0.20
0.30
0.55 0.50
5.80
6.20
6.20
5.60
5.60
5.80
0.75
A0B9_FP_V2
48
1
12
13 24
25
36
37
< *4.="" ‘17="" ngi="">
Package information STM32L451xx
200/207 DS11910 Rev 5
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 61. UFQFPN48 marking (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv43821V1
Date code
Pin 1 identifier
451CEU6
Product identification(1)
Revision code
B
Y WW
STM32L
DS11910 Rev 5 201/207
STM32L451xx Package information
203
7.8 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of all IDDXXX and VDDXXX, expressed in Watts. This is the
maximum chip internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ ((VDDIOx – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.8.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
7.8.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Ordering information.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
Table 101. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 56
°C/W
Thermal resistance junction-ambient
UFBGA100 - 7 × 7 mm / 0.5 mm pitch 75
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 58
Thermal resistance junction-ambient
UFBGA64 - 5 × 5 mm / 0.5 mm pitch 65
Thermal resistance junction-ambient
WLCSP64 3.357 x 3.657 / 0.4 mm pitch 53
Thermal resistance junction-ambient
LQFP48 7 x 7 / 0.5 mm pitch 55.7
Thermal resistance junction-ambient
UFQFPN48 - 7 × 7 mm / 0.5 mm pitch 29
Package information STM32L451xx
202/207 DS11910 Rev 5
As applications do not commonly use the STM32L451xx at maximum dissipation, it is useful
to calculate the exact power consumption and junction temperature to determine which
temperature range is best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 75 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL = 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V = 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Using the values obtained in Table 101 TJmax is calculated as follows:
For LQFP64, 58 °C/W
TJmax = 75 °C + (58 °C/W × 447 mW) = 75 °C + 25.926 °C = 100.926 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C) see Section 8:
Ordering information.
In this case, parts must be ordered at least with the temperature range suffix 6 (see Part
numbering).
Note: With this given PDmax user can find the TAmax allowed for a given device temperature range
(order code suffix 6 or 3).
Suffix 6: TAmax = TJmax - (58°C/W × 447 mW) = 105-25.926 = 79.074 °C
Suffix 3: TAmax = TJmax - (58°C/W × 447 mW) = 130-25.926 = 104.074 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 100 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL = 0.4 V
PINTmax = 20 mA × 3.5 V = 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
DS11910 Rev 5 203/207
STM32L451xx Package information
203
Using the values obtained in Table 101 TJmax is calculated as follows:
For LQFP64, 58 °C/W
TJmax = 100 °C + (58 °C/W × 134 mW) = 100 °C + 7.772 °C = 107.772 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 3 (see
Section 8: Ordering information) unless we reduce the power dissipation in order to be able
to use suffix 6 parts.
Refer to Figure 62 to select the required temperature range (suffix 6 or 3) according to your
ambient temperature or power requirements.
Figure 62. LQFP64 PD max vs. TA
MSv45731V1
600
0
100
200
300
400
500
700
65 75 85 95 105 115 125 135
Suffix 6
PD (mW)
TA (°C)
Suffix 3
% STM32 : Arm®
Ordering information STM32L451xx
204/207 DS11910 Rev 5
8 Ordering information
For a list of available options (such as speed, package) or for further information on any
aspect of this device contact the nearest ST sales office.
Table 102. STM32L451xx ordering information scheme
Example: STM32 L 451 C C T 6 TR
Device family
STM32 = Arm® based 32-bit microcontroller
Product type
L = ultra-low-power
Device subfamily
451: STM32L451xx
Pin count
C = 48 pins
R = 64 pins
V = 100 pins
Flash memory size
C = 256 KB of Flash memory
E = 512 KB of Flash memory
Package
T = LQFP ECOPACK®2
U = QFN ECOPACK®2
I = UFBGA ECOPACK®2
Y = CSP ECOPACK®2
Temperature range
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)
3 = Industrial temperature range, -40 to 125 °C (130 °C junction)
Packing
TR = tape and reel
xxx = programmed parts
DS11910 Rev 5 205/207
STM32L451xx Revision history
206
9 Revision history
Table 103. Document revision history
Date Revision Changes
21-Apr-2017 1 Initial release.
05-May-2017 2
Updated some power consumptions on cover page.
Added Table 4: STM32L451xx modes overview.
Updated Table 35: Current consumption in Stop 2
mode.
Updated Table 36: Current consumption in Stop 1
mode.
Updated Table 38: Current consumption in Standby
mode.
Updated Table 67: ADC characteristics.
Update note below Figure 30: Typical connection
diagram using the ADC.
26-May-2017 3
Added missing LPUART communication interface on
cover page.
Fixed OPAMP index in Table 4: STM32L451xx modes
overview.
Replaced RAM2 by SRAM2 in Section 3.9.3: Voltage
regulator and Section 3.9.4: Low-power modes.
Updated Section 3.7: Boot modes.
Added Table 10: DFSDM1 implementation.
Updated Table 61: I/O static characteristics.
Updated Section 7.2: UFBGA100 package information.
21-May-2018 4
Updated DAC terminology in all the document for
clarification: single DAC instance (= DAC1) with 2 output
channels.
Added ECOPACK2® information in Features.
Updated LPUART bullet in Features.
Updated Section 3.9.1: Power supply schemes.
Added Figure 3: Power-up/down sequence.
Added DFSDM1 in Table 6: STM32L451xx peripherals
interconnect matrix.
Updated Clock-out capability in Section 3.11: Clocks
and startup.
Updated Figure 4: Clock tree.
Updated Section 3.14.1: Nested vectored interrupt
controller (NVIC).
Removed a footnote in Table 16: STM32L451xx pin
definitions.
Updated Section 6.3.2: Operating conditions at power-
up / power-down.
Updated ACoeff in Table 26: Embedded internal voltage
reference.
Updated Table 41: Peripheral current consumption.
Revision history STM32L451xx
206/207 DS11910 Rev 5
21-May-2018 4
(continued)
Added Section 6.3.16: Extended interrupt and event
controller input (EXTI) characteristics.
Updated Table 61: I/O static characteristics.
Updated Table 73: DAC characteristics.
06-Oct-2020 5
Added LQFP48 Package.
Updated Energy benchmark.
Updated Table 2: STM32L451xx family device features
and peripheral counts.
Added Figure 11: STM32L451Cx LQFP48 pinout(1).
Updated Table 16: STM32L451xx pin definitions.
Updated Figure 13: STM32L451xx memory map.
Updated Table 23: General operating conditions.
Updated Table 50: MSI oscillator characteristics.
Updated Section 6.3.14: I/O port characteristics.
Updated Table 62: Output voltage characteristics.
Updated Figure 36: Quad SPI timing diagram - DDR
mode.
Updated Section 7: Package information.
Added Section 7.6: LQFP48 package information.
Updated Table 101: Package thermal characteristics.
Table 103. Document revision history (continued)
Date Revision Changes
DS11910 Rev 5 207/207
STM32L451xx
207
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved